2,429 research outputs found

    Modeling the connection between ultraviolet and infrared galaxy populations across cosmic times

    Get PDF
    Using a phenomenological approach, we self-consistently model the redshift evolution of the ultraviolet (UV) and infrared (IR) luminosity functions across cosmic time, as well as a range of observed IR properties of UV-selected galaxy population. This model is an extension of the 2SFM (2 star-formation modes) formalism, which is based on the observed "main-sequence" of star-forming galaxies, i.e. a strong correlation between their stellar mass and their star formation rate (SFR), and a secondary population of starbursts with an excess of star formation. The balance between the UV light from young, massive stars and the dust-reprocessed IR emission is modeled following the empirical relation between the attenuation (IRX for IR excess hereafter) and the stellar mass, assuming a scatter of 0.4\,dex around this relation. We obtain a good overall agreement with the measurements of the IR luminosity function up to z~3 and the UV luminosity functions up to z~6, and show that a scatter on the IRX-M relation is mandatory to reproduce these observables. We also naturally reproduce the observed, flat relation between the mean IRX and the UV luminosity at LUV>109.5 L⊙. Finally, we perform predictions of the UV properties and detectability of IR-selected samples and the vice versa, and discuss the results in the context of the UV-rest-frame and sub-millimeter surveys of the next decade

    Effects of spatial non-uniformity on laser dynamics

    Full text link
    Semiclassical equations of lasing dynamics are re-derived for a lasing medium in a cavity with a spatially non-uniform dielectric constant. It is shown that the non-uniformity causes a radiative coupling between modes of the empty cavity. This coupling results in a renormalization of self- and cross-saturation coefficients, which acquire a non-trivial dependence on the pumping intensity. Possible manifestations of these effects in random lasers are discussed.Comment: 4 pages, 1 figure, LaTex. Introduction is significantly rewritten, and the results is placed in the context of random lasin

    Ultraslow light in inhomogeneously broadened media

    Get PDF
    We calculate the characteristics of ultraslow light in an inhomogeneously broadened medium. We present analytical and numerical results for the group delay as a function of power of the propagating pulse. We apply these results to explain the recently reported saturation behavior [Baldit {\it et al.}, \prl {\bf 95}, 143601 (2005)] of ultraslow light in rare earth ion doped crystal.Comment: 4 pages, 5 figure

    Lasing and cooling in a hot cavity

    Full text link
    We present a microscopic laser model for many atoms coupled to a single cavity mode, including the light forces resulting from atom-field momentum exchange. Within a semiclassical description, we solve the equations for atomic motion and internal dynamics to obtain analytic expressions for the optical potential and friction force seen by each atom. When optical gain is maximum at frequencies where the light field extracts kinetic energy from the atomic motion, the dynamics combines optical lasing and motional cooling. From the corresponding momentum diffusion coefficient we predict sub-Doppler temperatures in the stationary state. This generalizes the theory of cavity enhanced laser cooling to active cavity systems. We identify the gain induced reduction of the effective resonator linewidth as key origin for the faster cooling and lower temperatures, which implys that a bad cavity with a gain medium can replace a high-Q cavity. In addition, this shows the importance of light forces for gas lasers in the low-temperature limit, where atoms can arrange in a periodic pattern maximizing gain and counteracting spatial hole burning. Ultimately, in the low temperature limit, such a setup should allow to combine optical lasing and atom lasing in single device.Comment: 11 pages, 6 figure

    Comparing Star Formation on Large Scales in the c2d Legacy Clouds: Bolocam 1.1 mm Dust Continuum Surveys of Serpens, Perseus, and Ophiuchus

    Get PDF
    We have undertaken an unprecedentedly large 1.1 millimeter continuum survey of three nearby star forming clouds using Bolocam at the Caltech Submillimeter Observatory. We mapped the largest areas in each cloud at millimeter or submillimeter wavelengths to date: 7.5 sq. deg in Perseus (Paper I), 10.8 sq. deg in Ophiuchus (Paper II), and 1.5 sq. deg in Serpens with a resolution of 31", detecting 122, 44, and 35 cores, respectively. Here we report on results of the Serpens survey and compare the three clouds. Average measured angular core sizes and their dependence on resolution suggest that many of the observed sources are consistent with power-law density profiles. Tests of the effects of cloud distance reveal that linear resolution strongly affects measured source sizes and densities, but not the shape of the mass distribution. Core mass distribution slopes in Perseus and Ophiuchus (alpha=2.1+/-0.1 and alpha=2.1+/-0.3) are consistent with recent measurements of the stellar IMF, whereas the Serpens distribution is flatter (alpha=1.6+/-0.2). We also compare the relative mass distribution shapes to predictions from turbulent fragmentation simulations. Dense cores constitute less than 10% of the total cloud mass in all three clouds, consistent with other measurements of low star-formation efficiencies. Furthermore, most cores are found at high column densities; more than 75% of 1.1 mm cores are associated with Av>8 mag in Perseus, 15 mag in Serpens, and 20-23 mag in Ophiuchus.Comment: 32 pages, including 18 figures, accepted for publication in Ap

    Fluctuations relations for semiclassical single-mode laser

    Full text link
    Over last decades, the study of laser fluctuations has shown that laser theory may be regarded as a prototypical example of a nonlinear nonequilibrium problem. The present paper discusses the fluctuation relations, recently derived in nonequilibrium statistical mechanics, in the context of the semiclassical laser theory.Comment: 11 pages, 3 figure

    A High-Density Linkage Map of the Ancestral Diploid Strawberry, Fragaria iinumae, Constructed with Single Nucleotide Polymorphism Markers from the IStraw90 Array and Genotyping by Sequencing

    Get PDF
    Fragaria iinumae Makino is recognized as an ancestor of the octoploid strawberry species, which includes the cultivated strawberry, Fragaria ×ananassa Duchesne ex Rozier. Here we report the construction of the first high-density linkage map for F. iinumae. The F. iinumae linkage map (Fii map) is based on two high-throughput techniques of single nucleotide polymorphism (SNP) genotyping: the IStraw90 Array (hereafter “Array”), and genotyping by sequencing (GBS). The F2 generation mapping population was derived by selfing F. iinumae hybrid F1D, the product of a cross between two divergent F. iinumae accessions collected from Hokkaido, Japan. The Fii map consists of seven linkage groups (LGs) and has an overall length of 451.7 cM as defined by 496 loci populated by 4173 markers: 3280 from the Array and 893 from GBS. Comparisons with two versions of the Fragaria vesca ssp. vesca L. ‘Hawaii 4’ pseudo-chromosome (PC) assemblies reveal substantial conservation of synteny and colinearity, yet identified differences that point to possible genomic divergences between F. iinumae and F. vesca, and/or to F. vesca genomic assembly errors. The Fii map provides a basis for anchoring a F. iinumae genome assembly as a prerequisite for constructing a second diploid reference genome for Fragaria

    A Search for Ultraviolet Emission from LINERs

    Get PDF
    We have obtained Hubble Space Telescope WFPC2 2200 A and optical V-band images of 20 low-luminosity active galactic nuclei, most of which are spectroscopically classified as LINERs, in order to search for a possible photoionizing continuum. Six (30%) of the galaxies are detected in the UV. Two of the detected galaxies (NGC 3642 and NGC 4203) have compact, unresolved nuclear UV sources, while the remaining four UV sources (in NGC 4569, NGC 5005, NGC 6500, and NGC 7743) are spatially extended. Combining our sample with that of Maoz et al. (1995), we find that the probability of detection of a nuclear UV source is greatest for galaxies having low internal reddening and low inclination, and we conclude that dust obscuration is the dominant factor determining whether or not a UV source is detected. Large emission-line equivalent widths and the presence of broad-line emission also increase the likelihood of detection of nuclear UV emission. Our results suggest that the majority of LINERs harbor obscured nuclear UV sources, which may be either accretion-powered active nuclei or young star clusters. Under the assumption that the compact UV sources in NGC 3642 and NGC 4203 have nonstellar power-law spectra extending into the extreme ultraviolet, the extrapolated ionizing fluxes are sufficiently strong to photoionize the narrow-line regions of these objects. The V-band images of many galaxies in our sample reveal remarkably strong dust lanes which may be responsible for obscuring some UV sources.Comment: 25 pages, 4 figures, 3 tables, LaTeX, AASTeX v4.0 style file, accepted for publication in The Astrophysical Journal, additional figures available at http://astro.berkeley.edu/~barth/papers/u

    Comparison of Quantum and Classical Local-field Effects on Two-Level Atoms in a Dielectric

    Full text link
    The macroscopic quantum theory of the electromagnetic field in a dielectric medium interacting with a dense collection of embedded two-level atoms fails to reproduce a result that is obtained from an application of the classical Lorentz local-field condition. Specifically, macroscopic quantum electrodynamics predicts that the Lorentz redshift of the resonance frequency of the atoms will be enhanced by a factor of the refractive index n of the host medium. However, an enhancement factor of (n*n+2)/3 is derived using the Bloembergen procedure in which the classical Lorentz local-field condition is applied to the optical Bloch equations. Both derivations are short and uncomplicated and are based on well-established physical theories, yet lead to contradictory results. Microscopic quantum electrodynamics confirms the classical local-field-based results. Then the application of macroscopic quantum electrodynamic theory to embedded atoms is proved false by a specific example in which both the correspondence principle and microscopic theory of quantum electrodynamics are violated.Comment: Published version with rewritten abstract and introductio

    Self-consistent multi-mode lasing theory for complex or random lasing media

    Full text link
    A semiclassical theory of single and multi-mode lasing is derived for open complex or random media using a self-consistent linear response formulation. Unlike standard approaches which use closed cavity solutions to describe the lasing modes, we introduce an appropriate discrete basis of functions which describe also the intensity and angular emission pattern outside the cavity. This constant flux (CF) basis is dictated by the Green function which arises when formulating the steady state Maxwell-Bloch equations as a self-consistent linear response problem. This basis is similar to the quasi-bound state basis which is familiar in resonator theory and it obeys biorthogonality relations with a set of dual functions. Within a single-pole approximation for the Green function the lasing modes are proportional to these CF states and their intensities and lasing frequencies are determined by a set of non-linear equations. When a near threshold approximation is made to these equations a generalized version of the Haken-Sauermann equations for multi-mode lasing is obtained, appropriate for open cavities. Illustrative results from these equations are given for single and few mode lasing states, for the case of dielectric cavity lasers. The standard near threshold approximation is found to be unreliable. Applications to wave-chaotic cavities and random lasers are discussed.Comment: 18 pages, 9 figure
    • 

    corecore