6 research outputs found

    Modern Sample Preparation Techniques: A Brief Introduction

    Get PDF
    Due to fast growth in microprocessors, analytical instrumentations in spectroscopy, chromatography, microscopy, sensors and microdevices have been subjected to significant developments. Despite these advances, a sample preparation step is indispensable before instrumental analysis. Main reasons are low sensitivity of the instruments, matrix interferences and incompatibility of the sample with the analytical device. Most of the time spent and most of the errors occurring during a chemical analysis is on sample preparation step. As a result, any improvements in this essential process will have a significant effect on shortening the analysis time and its precision and accuracy and lowering the cost. This introductory chapter intends to draw the readers’ attention to the importance of sample preparation, the procedures of sampling and the source of errors that occur in the course of sampling. The chapter then continues with a heading on sample preparation techniques, including exhaustive and non-exhaustive methods of extraction. Microwave, sonication and membrane-based extraction techniques are more emphasized as exhaustive methods and under a new title, miniaturized methods are discussed. Automation, on-line compatibility and simplification is an important aspect of any sample preparation and extraction which is discussed at the end of this chapter

    Simultaneous elimination of Malachite Green, Rhodamine B and Cresol Red from aqueous sample with Sistan sand, optimized by Taguchi L16 and Plackett–Burman experiment design methods

    No full text
    Abstract The purpose of this study was to investigate the feasibility of simultaneous optimization and removal of dyes, Malachite green (MG), Rhodamine B (RhB) and Cresol Red (CR) from aqueous solutions by using Sistan sand as an extremely low cost adsorbent. Factors affecting adsorption of the analytes on the sorbent were investigated experimentally and by using Taguchi and Plackett–Burman experimental design methods. In most cases, the results of these two models were in agreement with each other and with experimental data obtained. Taguchi method was capable to predict results with accuracies better than 97.89%, 95.43%, and 97.79% for MG, RhB, and CR, respectively. Under the optimum conditions, the sorbent could remove simultaneously more than 83% of the dyes with the amount of adsorbed dyes of 0.132, 0.109, and 0.120 mg g−1 for MG, RhB and CR on sand, respectively. Kinetic studies showed that pseudo second order is the best model of adsorption for all analytes. Thermodynamic parameters revealed that this process is spontaneous and endothermic

    Sarcocystosis in Ruminants of Iran, as Neglected Food-Borne Disease: A Systematic Review and Meta-analysis

    No full text
    corecore