1,103 research outputs found

    Plasma turbulence simulations with X-points using the flux-coordinate independent approach

    Full text link
    In this work, the Flux-Coordinate Independent (FCI) approach to plasma turbulence simulations is formulated for the case of generic, static magnetic fields, including those possessing stochastic field lines. It is then demonstrated that FCI is applicable to nonlinear turbulent problems with and without X-point geometry. In particular, by means of simulations with the FENICIA code, it is shown that the standard features of ITG modes are recovered with reduced toroidal resolution. Finally, ITG turbulence under the influence of a static island is studied on the transport timescale with ITER-like parameters, showing the wide range of applicability of the method

    Magnetic energy cascade in spherical geometry: I. The stellar convective dynamo case

    Full text link
    We present a method to characterize the spectral transfers of magnetic energy between scales in simulations of stellar convective dynamos. The full triadic transfer functions are computed thanks to analytical coupling relations of spherical harmonics based on the Clebsch-Gordan coefficients. The method is applied to mean field αΩ\alpha\Omega dynamo models as benchmark tests. From the physical standpoint, the decomposition of the dynamo field into primary and secondary dynamo families proves very instructive in the αΩ\alpha\Omega case. The same method is then applied to a fully turbulent dynamo in a solar convection zone, modeled with the 3D MHD ASH code. The initial growth of the magnetic energy spectrum is shown to be non-local. It mainly reproduces the kinetic energy spectrum of convection at intermediate scales. During the saturation phase, two kinds of direct magnetic energy cascades are observed in regions encompassing the smallest scales involved in the simulation. The first cascade is obtained through the shearing of magnetic field by the large scale differential rotation that effectively cascades magnetic energy. The second is a generalized cascade that involves a range of local magnetic and velocity scales. Non-local transfers appear to be significant, such that the net transfers cannot be reduced to the dynamics of a small set of modes. The saturation of the large scale axisymmetric dipole and quadrupole are detailed. In particular, the dipole is saturated by a non-local interaction involving the most energetic scale of the magnetic energy spectrum, which points out the importance of the magnetic Prandtl number for large-scale dynamos.Comment: 21 pages, 14 figures, 1 table, accepted for publication in the Astrophysical Journa

    L-H transition dynamics in fluid turbulence simulations with neoclassical force balance

    Get PDF
    Spontaneous transport barrier generation at the edge of a magnetically confined plasma is investigated. To this end, a model of electrostatic turbulence in three-dimensional geometry is extended to account for the impact of friction between trapped and passing particles on the radial electric field. Non-linear flux-driven simulations are carried out, and it is shown that considering the radial and temporal variations of the neoclassical friction coefficients allows for a transport barrier to be generated above a threshold of the input power

    Control of test particle transport in a turbulent electrostatic model of the Scrape Off Layer

    Get PDF
    The EĂ—B{\bm E}\times{\bm B} drift motion of charged test particle dynamics in the Scrape Off Layer (SOL)is analyzed to investigate a transport control strategy based on Hamiltonian dynamics. We model SOL turbulence using a 2D non-linear fluid code based on interchange instability which was found to exhibit intermittent dynamics of the particle flux. The effect of a small and appropriate modification of the turbulent electric potential is studied with respect to the chaotic diffusion of test particle dynamics. Over a significant range in the magnitude of the turbulent electrostatic field, a three-fold reduction of the test particle diffusion coefficient is achieved

    Fraction of clear skies above astronomical sites: a new analysis from the GOES12 satellite

    Full text link
    Comparing the number of clear nights (cloud free) available for astronomical observations is a critical task because it should be based on homogeneous methodologies. Current data are mainly based on different judgements based on observer logbooks or on different instruments. In this paper we present a new homogeneous methodology on very different astronomical sites for modern optical astronomy, in order to quantify the available night time fraction. The data are extracted from night time GOES12 satellite infrared images and compared with ground based conditions when available. In this analysis we introduce a wider average matrix and 3-Bands correlation in order to reduce the noise and to distinguish between clear and stable nights. Temporal data are used for the classification. In the time interval 2007-2008 we found that the percentage of the satellite clear nights is 88% at Paranal, 76% at La Silla, 72.5% at La Palma, 59% at Mt. Graham and 86.5% at Tolonchar. The correlation analysis of the three GOES12 infrared bands B3, B4 and B6 indicates that the fraction of the stable nights is lower by 2% to 20% depending on the site

    The cluster M-T relation from temperature profiles observed with ASCA and ROSAT

    Full text link
    We calibrate the galaxy cluster mass - temperature relation using the temperature profiles of intracluster gas observed with ASCA (for hot clusters) and ROSAT (for cool groups). Our sample consists of apparently relaxed clusters for which the total masses are derived assuming hydrostatic equilibrium. The sample provides data on cluster X-ray emission-weighted cooling flow-corrected temperatures and total masses up to r_1000. The resulting M-T scaling in the 1-10 keV temperature range is M_1000 = (1.23 +- 0.20)/h_50 10^15 Msun (T/10 keV)^{1.79 +- 0.14} with 90% confidence errors, or significantly (99.99% confidence) steeper than the self-similar relation M propto T^{3/2}. For any given temperature, our measured mass values are significantly smaller compared to the simulation results of Evrard et al. (1996) that are frequently used for mass-temperature scaling. The higher-temperature subsample (kT > 4 keV) is consistent with M propto T^{3/2}, allowing the possibility that the self-similar scaling breaks down at low temperatures, perhaps due to heating by supernovae that is more important for low-temperature groups and galaxies as suggested by earlier works.Comment: 8 pages, 2 figures, accepted by Ap

    Physics of the Merging Clusters Cygnus A, A3667, and A2065

    Full text link
    We present ASCA gas temperature maps of the nearby merging galaxy clusters Cygnus A, A3667, and A2065. Cygnus A appears to have a particularly simple merger geometry that allows an estimate of the subcluster collision velocity from the observed temperature variations. We estimate it to be ~2000 km/s. Interestingly, this is similar to the free-fall velocity that the two Cygnus A subclusters should have achieved at the observed separation, suggesting that merger has been effective in dissipating the kinetic energy of gas halos into thermal energy, without channeling its major fraction elsewhere (e.g., into turbulence). In A3667, we may be observing a spatial lag between the shock front seen in the X-ray image and the corresponding rise of the electron temperature. A lag of the order of hundreds of kiloparsecs is possible due to the combination of thermal conduction and a finite electron-ion equilibration time. Forthcoming better spatial resolution data will allow a direct measurement of these phenomena using such lags. A2065 has gas density peaks coincident with two central galaxies. A merger with the collision velocity estimated from the temperature map should have swept away such peaks if the subcluster total mass distributions had flat cores in the centers. The fact that the peaks have survived (or quickly reemerged) suggests that the gravitational potential also is strongly peaked. Finally, the observed specific entropy variations in A3667 and Cygnus A indicate that energy injection from a single major merger may be of the order of the full thermal energy of the gas. We hope that these order of magnitude estimates will encourage further work on hydrodynamic simulations, as well as more quantitative representation of the simulation results.Comment: Corrected the Cyg-A figure (errors shown were 1-sigma not 90%); text unchanged. ApJ in press. Latex, 5 pages, 3 figures (2 color), uses emulateapj.st

    Spectroscopic Constraints on the Surface Magnetic Field of the Accreting Neutron Star EXO 0748-676

    Full text link
    Gravitationally redshifted absorption lines of Fe XXVI, Fe XXV, and O VIII were inferred recently in the X-ray spectrum of the bursting neutron star EXO 0748-676. We place an upper limit on the stellar magnetic field based on the iron lines. The oxygen absorption feature shows a multiple component profile that is consistent with Zeeman splitting in a magnetic field of ~(1-2)x10^9 gauss, and for which the corresponding Zeeman components of the iron lines are expected to be blended together. In other systems, a field strength >5x10^{10} gauss could induce a blueshift of the line centroids that would counteract gravitational redshift and complicate the derivation of constraints on the equation of state of the neutron star.Comment: 5 pages, submitted to Phys. Rev. Let
    • …
    corecore