1,285 research outputs found
Effect of Inhaled Xenon on Cerebral White Matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial
IMPORTANCE: Evidence from preclinical models indicates that xenon gas can prevent the development of cerebral damage after acute global hypoxic-ischemic brain injury but, thus far, these putative neuroprotective properties have not been reported in human studies. OBJECTIVE: To determine the effect of inhaled xenon on ischemic white matter damage assessed with magnetic resonance imaging (MRI). DESIGN, SETTING, AND PARTICIPANTS: A randomized single-blind phase 2 clinical drug trial conducted between August 2009 and March 2015 at 2 multipurpose intensive care units in Finland. One hundred ten comatose patients (aged 24-76 years) who had experienced out-of-hospital cardiac arrest were randomized. INTERVENTIONS: Patients were randomly assigned to receive either inhaled xenon combined with hypothermia (33°C) for 24 hours (n = 55 in the xenon group) or hypothermia treatment alone (n = 55 in the control group). MAIN OUTCOMES AND MEASURES: The primary end point was cerebral white matter damage as evaluated by fractional anisotropy from diffusion tensor MRI scheduled to be performed between 36 and 52 hours after cardiac arrest. Secondary end points included neurological outcome assessed using the modified Rankin Scale (score 0 [no symptoms] through 6 [death]) and mortality at 6 months. RESULTS: Among the 110 randomized patients (mean age, 61.5 years; 80 men [72.7%]), all completed the study. There were MRI data from 97 patients (88.2%) a median of 53 hours (interquartile range [IQR], 47-64 hours) after cardiac arrest. The mean global fractional anisotropy values were 0.433 (SD, 0.028) in the xenon group and 0.419 (SD, 0.033) in the control group. The age-, sex-, and site-adjusted mean global fractional anisotropy value was 3.8% higher (95% CI, 1.1%-6.4%) in the xenon group (adjusted mean difference, 0.016 [95% CI, 0.005-0.027], P = .006). At 6 months, 75 patients (68.2%) were alive. Secondary end points at 6 months did not reveal statistically significant differences between the groups. In ordinal analysis of the modified Rankin Scale, the median (IQR) value was 1 (1-6) in the xenon group and 1 (0-6) in the control group (median difference, 0 [95% CI, 0-0]; P = .68). The 6-month mortality rate was 27.3% (15/55) in the xenon group and 34.5% (19/55) in the control group (adjusted hazard ratio, 0.49 [95% CI, 0.23-1.01]; P = .053). CONCLUSIONS AND RELEVANCE: Among comatose survivors of out-of-hospital cardiac arrest, inhaled xenon combined with hypothermia compared with hypothermia alone resulted in less white matter damage as measured by fractional anisotropy of diffusion tensor MRI. However, there was no statistically significant difference in neurological outcomes or mortality at 6 months. These preliminary findings require further evaluation in an adequately powered clinical trial designed to assess clinical outcomes associated with inhaled xenon among survivors of out-of-hospital cardiac arrest. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00879892
Organometallic iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis
Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands
Live Imaging at the Onset of Cortical Neurogenesis Reveals Differential Appearance of the Neuronal Phenotype in Apical versus Basal Progenitor Progeny
The neurons of the mammalian brain are generated by progenitors dividing either at the apical surface of the ventricular zone (neuroepithelial and radial glial cells, collectively referred to as apical progenitors) or at its basal side (basal progenitors, also called intermediate progenitors). For apical progenitors, the orientation of the cleavage plane relative to their apical-basal axis is thought to be of critical importance for the fate of the daughter cells. For basal progenitors, the relationship between cell polarity, cleavage plane orientation and the fate of daughter cells is unknown. Here, we have investigated these issues at the very onset of cortical neurogenesis. To directly observe the generation of neurons from apical and basal progenitors, we established a novel transgenic mouse line in which membrane GFP is expressed from the beta-III-tubulin promoter, an early pan-neuronal marker, and crossed this line with a previously described knock-in line in which nuclear GFP is expressed from the Tis21 promoter, a pan-neurogenic progenitor marker. Mitotic Tis21-positive basal progenitors nearly always divided symmetrically, generating two neurons, but, in contrast to symmetrically dividing apical progenitors, lacked apical-basal polarity and showed a nearly randomized cleavage plane orientation. Moreover, the appearance of beta-III-tubulin–driven GFP fluorescence in basal progenitor-derived neurons, in contrast to that in apical progenitor-derived neurons, was so rapid that it suggested the initiation of the neuronal phenotype already in the progenitor. Our observations imply that (i) the loss of apical-basal polarity restricts neuronal progenitors to the symmetric mode of cell division, and that (ii) basal progenitors initiate the expression of neuronal phenotype already before mitosis, in contrast to apical progenitors
Circulating N-terminal brain natriuretic peptide and cardiac function in response to acute systemic hypoxia in healthy humans
Background: As it remains unclear whether hypoxia of cardiomyocytes could trigger the release of brain natriuretic peptide (BNP) in humans, we investigated whether breathing normobaric hypoxic gas mixture increases the circulating NT-proBNP in healthy male subjects.Methods: Ten healthy young men (age 29 ± 5 yrs, BMI 24.7 ± 2.8 kg/m2) breathed normobaric hypoxic gas mixture (11% O2/89% N2) for one hour. Venous blood samples were obtained immediately before, during, and 2 and 24 hours after hypoxic exposure. Cardiac function and flow velocity profile in the middle left anterior descending coronary artery (LAD) were measured by Doppler echocardiography.Results: Arterial oxygen saturation decreased steadily from baseline value of 99 ± 1% after the initiation hypoxia challenge and reached steady-state level of 73 ± 6% within 20-30 minutes. Cardiac output increased from 6.0 ± 1.2 to 8.1 ± 1.6 L/min and ejection fraction from 67 ± 4% to 75 ± 6% (both p < 0.001). Peak diastolic flow velocity in the LAD increased from 0.16 ± 0.04 to 0.28 ± 0.07 m/s, while its diameter remained unchanged. In the whole study group, NT-proBNP was similar to baseline (60 ± 32 pmol/ml) at all time points. However, at 24 h, concentration of NT-proBNP was higher (34 ± 18%) in five subjects and lower (17 ± 17%), p = 0.002 between the groups) in f
Cellular localization, accumulation and trafficking of double-walled carbon nanotubes in human prostate cancer cells
Carbon nanotubes (CNTs) are at present being considered as potential nanovectors with the ability to deliver therapeutic cargoes into living cells. Previous studies established the ability of CNTs to enter cells and their therapeutic utility, but an appreciation of global intracellular trafficking associated with their cellular distribution has yet to be described. Despite the many aspects of the uptake mechanism of CNTs being studied, only a few studies have investigated internalization and fate of CNTs inside cells in detail. In the present study, intracellular localization and trafficking of RNA-wrapped, oxidized double-walled CNTs (oxDWNT–RNA) is presented. Fixed cells, previously exposed to oxDWNT–RNA, were subjected to immunocytochemical analysis using antibodies specific to proteins implicated in endocytosis; moreover cell compartment markers and pharmacological inhibitory conditions were also employed in this study. Our results revealed that an endocytic pathway is involved in the internalization of oxDWNT–RNA. The nanotubes were found in clathrin-coated vesicles, after which they appear to be sorted in early endosomes, followed by vesicular maturation, become located in lysosomes. Furthermore, we observed co-localization of oxDWNT–RNA with the small GTP-binding protein (Rab 11), involved in their recycling back to the plasma membrane via endosomes from the trans-golgi network
Cardiac autophagic vacuolation in severe X-linked myopathy with excessive autophagy
X-linked myopathy with excessive autophagy (XMEA), caused by mutations of the VMA21 gene, is a strictly skeletal muscle disease. Extensive studies in yeast established VMA21 as the master assembly chaperone of V-ATPase, the complex multisubunit proton pump that acidifies organelles and that is vital to all mammalian tissues. As such, skeletal muscle disease exclusivity in XMEA is highly surprising. We now show that the severest VMA21 mutation, c.164-6t>g, does result in XMEA-typical pathology with autophagic vacuolar changes outside skeletal muscle, namely in the heart. However, even patients with this mutation do not exhibit clinical extramuscular disease, including cardiac disease, despite extreme skeletal muscle wasting to the extent of ventilation dependence. Uncovering the unique skeletal muscle vulnerability to defective organellar acidification, and resultant tissue-destructive excessive autophagy, will be informative to the understanding of muscle physiology. Alternatively, understanding extramuscular resistance to VMA21 mutation might disclose heretofore unknown mammalian V-ATPase assembly chaperones other than VMA21. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe
Transthoracic echocardiography for imaging of the different coronary artery segments: a feasibility study
<p>Abstract</p> <p>Background</p> <p>Transthoracic echocardiography (TTE) may be used for direct inspection of various parts of the main coronary arteries for detection of coronary stenoses and occlusions. We aimed to assess the feasibility of TTE to visualise the complete segments of the left main (LM), left descending (LAD), circumflex (Cx) and right (RCA) coronary arteries.</p> <p>Methods</p> <p>One hundred and eleven patients scheduled for diagnostic coronary angiography because of chest pain or acute coronary syndrome had a TTE study to map the passage of the main coronary arteries. LAD, Cx and RCA were each divided into proximal, middle and distal segments. If any part of the individual segment of a coronary artery with antegrade blood flow was not visualised, the segment was labeled as not satisfactorily seen.</p> <p>Results</p> <p>Complete imaging of the LM was achieved in 98% of the patients. With antegrade directed coronary artery flow, the proximal, middle and distal segments of LAD were completely seen in 96%, 95% and 91% of patients, respectively. Adding the completely seen segments with antegrade coronary flow and segments with retrograde coronary flow, the proximal, middle and distal segments of LAD were adequately visualised in 96%, 96% and 93% of patients, respectively. With antegrade directed coronary artery flow, the proximal, middle and distal segments of Cx were completely seen in 88%, 61% and 3% and in RCA in 40%, 28% and 54% of patients. Retrograde coronary artery flow was correctly identified as verified by coronary angiography in seven coronary segments, mainly in the posterior descending artery (labeled as the distal segment of RCA) and distal LAD.</p> <p>Conclusions</p> <p>TTE is a feasible method for complete demonstration of coronary flow in the LM, the proximal Cx and the different segments of LAD, but less suitable for the RCA and mid and distal segments of the Cx. (ClinicalTrials.gov number NTC00281346.)</p
Doxorubicin-induced chronic dilated cardiomyopathy—the apoptosis hypothesis revisited
The chemotherapeutic agent doxorubicin (DOX) has significantly increased survival rates of pediatric and adult cancer patients. However, 10% of pediatric cancer survivors will 10–20 years later develop severe dilated cardiomyopathy (DCM), whereby the exact molecular mechanisms of disease progression after this long latency time remain puzzling. We here revisit the hypothesis that elevated apoptosis signaling or its increased likelihood after DOX exposure can lead to an impairment of cardiac function and cause a cardiac dilation. Based on recent literature evidence, we first argue why a dilated phenotype can occur when little apoptosis is detected. We then review findings suggesting that mature cardiomyocytes are protected against DOX-induced apoptosis downstream, but not upstream of mitochondrial outer membrane permeabilisation (MOMP). This lack of MOMP induction is proposed to alter the metabolic phenotype, induce hypertrophic remodeling, and lead to functional cardiac impairment even in the absence of cardiomyocyte apoptosis. We discuss findings that DOX exposure can lead to increased sensitivity to further cardiomyocyte apoptosis, which may cause a gradual loss in cardiomyocytes over time and a compensatory hypertrophic remodeling after treatment, potentially explaining the long lag time in disease onset. We finally note similarities between DOX-exposed cardiomyocytes and apoptosis-primed cancer cells and propose computational system biology as a tool to predict patient individual DOX doses. In conclusion, combining recent findings in rodent hearts and cardiomyocytes exposed to DOX with insights from apoptosis signal transduction allowed us to obtain a molecularly deeper insight in this delayed and still enigmatic pathology of DC
National differences in implementation of minimally invasive surgery for colorectal cancer and the influence on short-term outcomes
Background: The timing and degree of implementation of minimally invasive surgery (MIS) for colorectal cancer vary among countries. Insights in national differences regarding implementation of new surgical techniques and the effect on postoperative outcomes are important for quality assurance, can show potential areas for country-specific improvement, and might be illustrative and supportive for similar implementation programs in other countries. Therefore, this study aimed to evaluate differences in patient selection, applied techniques, and results of minimal invasive surgery for colorectal cancer between the Netherlands and Sweden. Methods: Patients who underwent elective minimally invasive surgery for T1-3 colon or rectal cancer (2012–2018) registered in the Dutch ColoRectal Audit or Swedish ColoRectal Cancer Registry were included. Time trends in the application of MIS were determined. Outcomes were compared for time periods with a similar level of MIS implementation (Netherlands 2012–2013 versus Sweden 2017–2018). Multilevel analyses were performed to identify factors associated with adverse short-term outcomes. Results: A total of 46,095 Dutch and 8,819 Swedish patients undergoing MIS for colorectal cancer were included. In Sweden, MIS implementation was approximately 5 years later than in the Netherlands, with more robotic surgery and lower volumes per hospital. Although conversion rates were higher in Sweden, oncological and surgical outcomes were comparable. MIS in the Netherlands for the years 2012–2013 resulted in a higher reoperation rate for colon cancer and a higher readmission rate but lower non-surgical complication rates for rectal cancer if compared with MIS in Sweden during 2017–2018. Conclusion: This study showed that the implementation of MIS for colorectal cancer occurred later in Sweden than the Netherlands, with comparable outcomes despite lower volumes. Our study demonstrates that new surgical techniques can be implemented at a national level in a controlled and safe way, with thorough quality assurance.</p
- …
