132 research outputs found
A study of fetomaternal outcome in pregnancy beyond expected date of delivery in obstetrics and gynaecology department of a tertiary health care center of South Gujarat
Background: Post-dated pregnancy is that extends beyond 40 weeks plus one or more days (anytime past the estimated due date). Mother and the foetus are at increased risk of adverse events when the pregnancy continues beyond the expected date of delivery (EDD).
Method: This prospective observational study was conducted at obstetrics and gynaecology department of tertiary care centre of South Gujarat for 1 year period after official approval from human research ethical committee.
Results: In our study total 200 postdated pregnant women included. Majority i.e. 134 (67%) patients had delivered as normal vaginally, whereas 68 (34%) patients required caesarean section. The most common indication for cesarean section was meconium-stained liquor (42.6%, n=68) follow by fetal distress, 2nd stage CPD, non-progress of labor, failure of induction etc. Altogether 19 newborn need NICU admission for different complication of which the most common neonate’s complication was perinatal asphyxia followed by meconium aspiration syndrome and RDS and only one neonate had early neonate death (END) due to RDS.
Conclusions: In pregnancies beyond 40 weeks, timely confirmed of postdated pregnancy, effective fetal monitoring and timely induction and with proper intervention could preclude the adverse feto-maternal outcome
New transit observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b, and WASP-39 b
We present new transit light curves for planets in six extrasolar planetary
systems. They were acquired with 0.4-2.2 m telescopes located in west Asia,
Europe, and South America. When combined with literature data, they allowed us
to redetermine system parameters in a homogeneous way. Our results for
individual systems are in agreement with values reported in previous studies.
We refined transit ephemerides and reduced uncertainties of orbital periods by
a factor between 2 and 7. No sign of any variations in transit times was
detected for the planets studied.Comment: Submitted to Acta Astronomic
Transit Timing Analysis in the HAT-P-32 system
We present the results of 45 transit observations obtained for the transiting
exoplanet HAT-P-32b. The transits have been observed using several telescopes
mainly throughout the YETI network. In 25 cases, complete transit light curves
with a timing precision better than min have been obtained. These light
curves have been used to refine the system properties, namely inclination ,
planet-to-star radius ratio , and the ratio between
the semimajor axis and the stellar radius . First analyses by
Hartman et al. (2011) suggest the existence of a second planet in the system,
thus we tried to find an additional body using the transit timing variation
(TTV) technique. Taking also literature data points into account, we can
explain all mid-transit times by refining the linear ephemeris by 21ms. Thus we
can exclude TTV amplitudes of more than min.Comment: MNRAS accepted; 13 pages, 10 figure
Transit Timing Analysis in the HAT-P-32 System
We present the results of 45 transit observations obtained for the transiting exoplanet HATP- 32b. The transits have been observed using several telescopes mainly throughout the YETI (Young Exoplanet Transit Initiative) network. In 25 cases, complete transit light curves with a timing precision better than 1.4 min have been obtained. These light curves have been used to refine the system properties, namely inclination i, planet-to-star radius ratio Rp/Rs, and the ratio between the semimajor axis and the stellar radius a/Rs. First analyses by Hartman et al. suggests the existence of a second planet in the system, thus we tried to find an additional body using the transit timing variation (TTV) technique. Taking also the literature data points into account, we can explain all mid-transit times by refining the linear ephemeris by 21 ms. Thus, we can exclude TTV amplitudes of more than ∼1.5min
New Transit Observations for HAT-P-30 b, HAT-P-37 b, TrES-5 b, WASP-28 b, WASP-36 b and WASP-39 b
We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4–2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.Fil: Maciejewski, G.. Nicolaus Copernicus University; PoloniaFil: Dimitrov, D.. Bulgarian Academy Of Sciences; BulgariaFil: Mancini, L.. Max Planck Institute for Astronomy; Alemania. Osservatorio Astrofisico Di Torino; Italia. Istituto Nazionale di Astrofisica; ItaliaFil: Southworth, J.. Keele University; Reino UnidoFil: Ciceri, S.. Max Planck Institute For Astronomy; AlemaniaFil: D'Ago, G.. Istituto Internazionale per gli Alti Studi ; ItaliaFil: Bruni, I.. Osservatorio Astrofisico di Bologna; Italia. Istituto Nazionale di Astrofisica; ItaliaFil: Raetz, St.. Universitat Erlangen-nurmberg. Astronomisches Institut-dr. Karl Remeis-sternwarte & Ecap; Alemania. European Space Agency; Países BajosFil: Nowak, G.. Instituto de Astrofísica de Canarias; España. Nicolaus Copernicus University; Polonia. Universidad de La Laguna; EspañaFil: Ohlert, J.. University of Applied Sciences; Alemania. Michael Adrian Observatorium; AlemaniaFil: Puchalski, D.. Nicolaus Copernicus University; PoloniaFil: Saral, G.. Istanbul University; Turquía. University Of Geneva (ug);Fil: Derman, E.. Ankara University; TurquíaFil: Petrucci, Romina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Jofré, E.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomía Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomía Teórica y Experimental; ArgentinaFil: Seeliger, M.. Universitat Erlangen-nurmberg. Astronomisches Institut-dr. Karl Remeis-sternwarte & Ecap; AlemaniaFil: Henning, T.. Max Planck Institute for Astronomy; Alemani
Constraints On A Second Planet In The WASP-3 System
There have been previous hints that the transiting planet WASP-3b is accompanied by a second planet in a nearby orbit, based on small deviations from strict periodicity of the observed transits. Here we present 17 precise radial velocity (RV) measurements and 32 transit light curves that were acquired between 2009 and 2011. These data were used to refine the parameters of the host star and transiting planet. This has resulted in reduced uncertainties for the radii and masses of the star and planet. The RV data and the transit times show no evidence for an additional planet in the system. Therefore, we have determined the upper limit on the mass of any hypothetical second planet, as a function of its orbital period
- …