8 research outputs found

    Molecular characterisation of the day neutral flowering (dnf) mutant in Arabidopsis thaliana

    Get PDF
    For many plants day length is critical for the control of flowering time, as the ability to respond to environmental signals is fundamental for the induction of flowering in optimal conditions. Arabidopsis is a facultative long day plant and as such flowers under both long and short days but sooner under long day conditions. To identify novel flowering mutants of the photoperiodic pathway a T-DNA tagged population of Arabidopsis was obtained from NASC (INRA Versailles lines) and screened for altered flowering times in long and short days. A novel flowering time mutant, termed day neutral flowering (dnf) was isolated as a result of this screen which displayed no short-day inhibition of flowering. The dnf mutant, therefore, flowers at the same time under both long and short day conditions. Complementation of the dnf mutant was carried out by re-introducing the wild-type DNF gene under the control of its endogenous promoter. Further complementation was also achieved using N-terminal TAP-tag fusion proteins. This complementation confirmed that the dnf mutation is responsible for the observed phenotype. The ability to perceive daylength in Arabidopsis is achieved by the coincidence of light with (CONSTANS) CO expression. This promotes the expression of FLOWERING LOCUS T (FT) which in turn leads to the promotion of flowering. Quantitative real-time PCR (qRT-PCR) has shown that the expression of both CO and FT is altered in the dnf mutant, which is indicative of its early flowering phenotype. Furthermore the expression of GIGANTEA (GI) was unaltered in dnf. These results position DNF upstream of CO and downstream of GI within this photoperiodic flowering pathway. Crosses between dnf and the co-2 mutant flowered at the same time as the co-2 mutant and as such confirms that DNF lies on the photoperiodic flowering pathway. The fact that dnf flowers early in SD combined with the qRT-PCR analysis of GI, CO and FT suggest that DNF plays a role in the repression of CO in such photoperiods. The DNF protein is 141 amino acids in length and contains a predicted membrane spanning domain between residues 13 and 33 and a putative RING finger domain between residue 79 and 121. This putative ring finger domain within DNF shows sequence similarity to both an E3 ligase and a PHD domain. Many E3 ubiquitin ligases have been shown to target specific proteins for degradation by the 26S proteosome whereas PHD domains have been implicated in the regulation of gene transcription through chromatin remodelling. The biochemical function of DNF is unknown, however one method to elucidate its role is to look at possible protein interactors. With this aim in mind we have decided to use an in vivo pull-down approach and have produced plants expressing a TAP tagged DNF protein for this purpose. However, due to time constraints pull down and MASS SPEC analysis was unable to be performed. The results of EGFP expression assays revealed that DNF protein is localised in the cytoplasm when driven by its native promoter and in the cytoplasm and nucleus of plant cells when over-expressed from the strong P35S promoter. The hypothesised role of DNF in the control of flowering will be discussed

    Breast Cancer Index is a predictive biomarker of treatment benefit and outcome from extended tamoxifen therapy: final analysis of the Trans-aTTom study

    Get PDF
    PURPOSE: The Breast Cancer Index (BCI) HOXB13/IL17BR (H/I) ratio predicts benefit from extended endocrine therapy in hormone receptor–positive (HR(+)) early-stage breast cancer. Here, we report the final analysis of the Trans-aTTom study examining BCI (H/I)'s predictive performance. EXPERIMENTAL DESIGN: BCI results were available for 2,445 aTTom trial patients. The primary endpoint of recurrence-free interval (RFI) and secondary endpoints of disease-free interval (DFI) and disease-free survival (DFS) were examined using Cox proportional hazards regression and log-rank test. RESULTS: Final analysis of the overall study population (N = 2,445) did not show a significant improvement in RFI with extended tamoxifen [HR, 0.90; 95% confidence interval (CI), 0.69–1.16; P = 0.401]. Both the overall study population and N0 group were underpowered due to the low event rate in the N0 group. In a pre-planned analysis of the N(+) subset (N = 789), BCI (H/I)-High patients derived significant benefit from extended tamoxifen (9.7% absolute benefit: HR, 0.33; 95% CI, 0.14–0.75; P = 0.016), whereas BCI (H/I)-Low patients did not (−1.2% absolute benefit; HR, 1.11; 95% CI, 0.76–1.64; P = 0.581). A significant treatment-to-biomarker interaction was demonstrated on the basis of RFI, DFI, and DFS (P = 0.037, 0.040, and 0.025, respectively). BCI (H/I)-High patients remained predictive of benefit from extended tamoxifen in the N(+)/HER2(−) subgroup (9.4% absolute benefit: HR, 0.35; 95% CI, 0.15–0.81; P = 0.047). A three-way interaction evaluating BCI (H/I), treatment, and HER2 status was not statistically significant (P = 0.849). CONCLUSIONS: Novel findings demonstrate that BCI (H/I) significantly predicts benefit from extended tamoxifen in HR(+) N(+) patients with HER2(−) disease. Moreover, BCI (H/I) demonstrates significant treatment to biomarker interaction across survival outcomes

    Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negativeregulators of plant immunity

    No full text
    Signalling by ubiquitination is implicated in diverse aspects of the plant lifecycle, and enzymes of ubiquitin metabolism are overrepresented in the Arabidopsis genome compared with other model eukaryotes. Despite the importance of ubiquitination in the regulation of signalling, little is known about deubiquitinating enzymes, which reverse the process of ubiquitination. Transgenic RNA interference-based cosuppression and the isolation of Atubp12/13 double mutants collectively provides the first report that AtUBP12 and AtUBP13 are functionally redundant and are required for immunity against virulent Pseudomonas syringae pv tomato in Arabidopsis. The Solanaceous AtUBP12 orthologue NtUBP12 was identified. Viral-induced gene silencing and transient gain-of-function assays were employed to establish that the NtUBP12 protein functions as a negative regulator of the Cf-9-triggered hypersensitive response. Here, we demonstrate that NtUBP12 and AtUBP12 are bona fide deubiquitinating enzymes capable of cleaving lysine-48-linked ubiquitin chains. AtUBP12 and NtUBP12 are functionally interchangeable and their deubiquitinating activity is required to suppress plant cell death. Overall, our data implicate AtUBP12- and NtUBP12-dependent deubiquitination in the stabilization of common substrates across Solanaceae and Brassicaceae which regulate disease resistance

    Correlative studies of the Breast Cancer Index (HOXB13/IL17BR) and ER, PR, AR, AR/ER ratio and Ki67 for prediction of extended endocrine therapy benefit:a Trans-aTTom study

    Get PDF
    BACKGROUND: Multiple clinical trials demonstrate consistent but modest benefit of adjuvant extended endocrine therapy (EET) in HR + breast cancer patients. Predictive biomarkers to identify patients that benefit from EET are critical to balance modest reductions in risk against potential side effects of EET. This study compares the performance of the Breast Cancer Index, BCI (HOXB13/IL17BR, H/I), with expression of estrogen (ER), progesterone (PR), and androgen receptors (AR), and Ki67, for prediction of EET benefit. METHODS: Node-positive (N+) patients from the Trans-aTTom study with available tissue specimen and BCI results (N = 789) were included. Expression of ER, PR, AR, and Ki67 was assessed by quantitative immunohistochemistry. BCI (H/I) gene expression analysis was conducted by quantitative RT-PCR. Statistical significance of the treatment by biomarker interaction was evaluated by likelihood ratio tests based on multivariate Cox proportional models, adjusting for age, tumor size, grade, and HER2 status. Pearson’s correlation coefficients were calculated to evaluate correlations between BCI (H/I) versus ER, PR, AR, Ki67 and AR/ER ratio. RESULTS: EET benefit, measured by the difference in risk of recurrence between patients treated with tamoxifen for 10 versus 5 years, is significantly associated with increasing values of BCI (H/I) (interaction P = 0.01). In contrast, expression of ER (P = 0.83), PR (P = 0.66), AR (P = 0.78), Ki67 (P = 0.87) and AR/ER ratio (P = 0.84) exhibited no significant relationship with EET benefit. BCI (H/I) showed a very weak negative correlation with ER (r = − 0.18), PR (r = − 0.25), and AR (r = − 0.14) expression, but no correlation with either Ki67 (r = 0.04) or AR/ER ratio (r = 0.02). CONCLUSION: These findings are consistent with the growing body of evidence that BCI (H/I) is significantly predictive of response to EET and outcome. Results from this direct comparison demonstrate that expression of ER, PR, AR, Ki67 or AR/ER ratio are not predictive of benefit from EET. BCI (H/I) is the only clinically validated biomarker that predicts EET benefit. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13058-022-01589-x

    Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells

    No full text
    In sensitized individuals, exposure to allergens such as Dermatophagoides pteronyssinus (Der p) causes Th2 polarization and release of cytokines, including IL-4 and IL-13. Because Der p extracts also have direct effects on epithelial cells, we hypothesized that allergen augments the effects of Th2 cytokines by promoting mediator release from the bronchial epithelium in allergic asthma. To test our hypothesis, primary bronchial epithelial cultures were grown from bronchial brushings of normal and atopic asthmatic subjects. RT-PCR showed that each culture expressed IL-4R?, common ?-chain, and IL-13R?1, as well as IL-13R?2, which negatively regulates IL-13 signaling; FACS analysis confirmed IL-13R?2 protein expression. Exposure of epithelial cultures to either Der p extracts, TNF-?, IL-4, or IL-13 enhanced GM-CSF and IL-8 release, and this was partially suppressible by corticosteroids. Simultaneous exposure of the epithelial cultures to IL-4 or IL-13 together with Der p resulted in a further increase in cytokine release, which was at least additive. Release of TGF-? was also increased by TNF-? and combinations of IL-4, IL-13, and Der p; however, this stimulation was only significant in the asthma-derived cultures. These data suggest that, in an allergic environment, Th2 cytokines and allergen have the potential to sustain airway inflammation through a cooperative effect on cytokine release by the bronchial epithelium. Our novel finding that IL-4, IL-13, and allergen enhance release of TGF-?, a ligand for the epidermal growth factor receptor that stimulates fibroblast proliferation and goblet cell differentiation, provides a potential link between allergen exposure, Th2 cytokines, and airway remodelling in asthma
    corecore