1,562 research outputs found

    Narratives of resistance: (Re) Telling the story of the HIV/AIDS movement – Because the lives and legacies of Black, Indigenous, and People of Colour communities depend on it

    Get PDF
    Centering the narratives of the intersectional struggles within the HIV movement for Indigenous sovereignty, Black and People of Colour liberation, and LGBTQ rights tirelessly fought for by Black, Indigenous, and People of Colour communities legitimates their lives and legacies within the movement; and the relevance of a focused response to the HIV epidemic that continues to wreak devastation in these communities. The recent political push for a post-HIV era solely centers the realities of middle-class white, gay men and has genocidal implications for Black, Indigenous, and People of Colour communities

    Mathematical modelling of fibre-enhanced perfusion inside\ud a tissue-engineering bioreactor

    Get PDF
    We develop a simple mathematical model for forced flow of culture medium through a porous scaffold in a tissue- engineering bioreactor. Porous-walled hollow fibres penetrate the scaffold and act as additional sources of culture medium. The model, based on Darcy’s law, is used to examine the nutrient and shear-stress distributions throughout the scaffold. We consider several configurations of fibres and inlet and outlet pipes. Compared with a numerical solution of the full Navier–Stokes equations within the complex scaffold geometry, the modelling approach is cheap, and does not require knowledge of the detailed microstructure of the particular scaffold being used. The potential of this approach is demonstrated through quantification of the effect the additional flow from the fibres has on the nutrient and shear-stress distribution

    Microbial impacts on 99mTc migration through sandstone under highly alkaline conditions relevant to radioactive waste disposal

    Get PDF
    Geological disposal of intermediate level radioactive waste in the UK is planned to involve the use of cementitious materials, facilitating the formation of an alkali-disturbed zone within the host rock. The biogeochemical processes that will occur in this environment, and the extent to which they will impact on radionuclide migration, are currently poorly understood. This study investigates the impact of biogeochemical processes on the mobility of the radionuclide technetium, in column experiments designed to be representative of aspects of the alkali-disturbed zone. Results indicate that microbial processes were capable of inhibiting 99mTc migration through columns, and X-ray radiography demonstrated that extensive physical changes had occurred to the material within columns where microbiological activity had been stimulated. The utilisation of organic acids under highly alkaline conditions, generating H2 and CO2, may represent a mechanism by which microbial processes may alter the hydraulic conductivity of a geological environment. Column sediments were dominated by obligately alkaliphilic H2-oxidising bacteria, suggesting that the enrichment of these bacteria may have occurred as a result of H2 generation during organic acid metabolism. The results from these experiments show that microorganisms are able to carry out a number of processes under highly alkaline conditions that could potentially impact on the properties of the host rock surrounding a geological disposal facility for intermediate level radioactive waste

    A Systematically Reduced Mathematical Model for Organoid Expansion

    Get PDF
    Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro, they recapitulate the structure, heterogeneity, and function of their in vivo counterparts. As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and personalised medicine, demand has increased for low-cost and efficient methods of producing them in a reproducible manner and at scale. Here we focus on a bioreactor technology for organoid production, which exploits fluid flow to enhance mass transport to and from the organoids. To ensure large numbers of organoids can be grown within the bioreactor in a reproducible manner, nutrient delivery to, and waste product removal from, the organoids must be carefully controlled. We develop a continuum mathematical model to investigate how mass transport within the bioreactor depends on the inlet flow rate and cell seeding density, focusing on the transport of two key metabolites: glucose and lactate. We exploit the thin geometry of the bioreactor to systematically simplify our model. This significantly reduces the computational cost of generating model solutions, and provides insight into the dominant mass transport mechanisms. We test the validity of the reduced models by comparison with simulations of the full model. We then exploit our reduced mathematical model to determine, for a given inlet flow rate and cell seeding density, the evolution of the spatial metabolite distributions throughout the bioreactor. To assess the bioreactor transport characteristics, we introduce metrics quantifying glucose conversion (the ratio between the total amounts of consumed and supplied glucose), the maximum lactate concentration, the proportion of the bioreactor with intolerable lactate concentrations, and the time when intolerable lactate concentrations are first experienced within the bioreactor. We determine the dependence of these metrics on organoid-line characteristics such as proliferation rate and rate of glucose consumption per cell. Finally, for a given organoid line, we determine how the distribution of metabolites and the associated metrics depend on the inlet flow rate. Insights from this study can be used to inform bioreactor operating conditions, ultimately improving the quality and number of bioreactor-expanded organoids

    Functional 3D architecture in an intrinsically disordered E3 ligase domain facilitates ubiquitin transfer

    Get PDF
    Funding: Wellcome Trust Investigator Awards (098391/Z/12/Z and 217196/Z/19/Z) and Cancer Research UK Programme grant (C434/A21747) to R.T.H., Wellcome Trust Studentship (109113/Z/15/Z) to P.M., Wellcome Trust Collaborative Award (215539) and multiuser equipment grant (104833) to S.J.M. Additionally J.C.P. thanks the Scottish Universities Physics Alliance (SUPA) and the University of St. Andrews for financial support.The human genome contains an estimated 600 ubiquitin E3 ligases, many of which are single-subunit E3s (ssE3s) that can bind to both substrate and ubiquitin-loaded E2 (E2~Ub). Within ssE3s structural disorder tends to be located in substrate binding and domain linking regions. RNF4 is a ssE3 ligase with a C-terminal RING domain and disordered N-terminal region containing SUMO Interactions Motifs (SIMs) required to bind SUMO modified substrates. Here we show that, although the N-terminal region of RNF4 bears no secondary structure, it maintains a compact global architecture primed for SUMO interaction. Segregated charged regions within the RNF4 N-terminus promote compaction, juxtaposing RING domain and SIMs to facilitate substrate ubiquitination. Mutations that induce a more extended shape reduce ubiquitination activity. Our result offer insight into a key step in substrate ubiquitination by a member of the largest ubiquitin ligase subtype and reveal how a defined architecture within a disordered region contributes to E3 ligase function.Publisher PDFPeer reviewe

    A consensus prognostic gene expression classifier for ER positive breast cancer.

    Get PDF
    BACKGROUND: A consensus prognostic gene expression classifier is still elusive in heterogeneous diseases such as breast cancer. RESULTS: Here we perform a combined analysis of three major breast cancer microarray data sets to hone in on a universally valid prognostic molecular classifier in estrogen receptor (ER) positive tumors. Using a recently developed robust measure of prognostic separation, we further validate the prognostic classifier in three external independent cohorts, confirming the validity of our molecular classifier in a total of 877 ER positive samples. Furthermore, we find that molecular classifiers may not outperform classical prognostic indices but that they can be used in hybrid molecular-pathological classification schemes to improve prognostic separation. CONCLUSION: The prognostic molecular classifier presented here is the first to be valid in over 877 ER positive breast cancer samples and across three different microarray platforms. Larger multi-institutional studies will be needed to fully determine the added prognostic value of molecular classifiers when combined with standard prognostic factors

    Understanding language learning in Malta

    Get PDF
    The Ministry for Education and Employment (MEDE) in Malta has a strategic objective to maintain and strengthen standards of English language proficiency within the school education system so that Malta remains a high-performing Commonwealth and European Union country. This should perpetuate the existing, successful provision of bilingual education (Mifsud and Vella forthcoming 2017, Ministry of Education 2016) which prepares individuals from early on in life, who are equally fluent in Maltese and English, for the global employment market. To this end, the Ministry and Cambridge English Language Assessment entered into an agreement for an integrated solution which included the benchmarking of student English language levels in the school sector (Year 1) and the institutional capacitybuilding of Maltese teachers (Year 2). Cambridge English Language Assessment, in collaboration with the Ministry, conducted the Year 1 benchmarking project, which aimed at presenting a snapshot of English language proficiency in two key grades at Primary and Secondary education in relation to international standards, namely the Common European Framework of Reference (CEFR, Council of Europe 2001). The six CEFR reference levels are now widely accepted as the international standard for grading an individual’s language proficiency. In addition to benchmarking learner proficiency, a comprehensive profile of learner, teacher and parent attitudes towards English language education in Malta was investigated. This aspect of the project was designed to provide a comprehensive profile of the Maltese educational context by bringing together views from the main stakeholders. Results also feed into the Ministry’s desire to deliver institutional capacity-building in assessment and teaching methodology, a strategic plan for continuous professional development of the teaching cadre, and potential international certification for learners and teachers.peer-reviewe

    Fatal S. aureus Hemorrhagic Pneumonia: Genetic Analysis of a Unique Clinical Isolate Producing both PVL and TSST-1

    Get PDF
    In 2008, an unusual strain of methicillin-sensitive Staphylococcus aureus (MSSA68111), producing both Panton-Valentine leukocidin (PVL) and toxic shock syndrome toxin-1 (TSST-1), was isolated from a fatal case of necrotizing pneumonia. Because PVL/TSST-1 co-production in S. aureus is rare, we characterized the molecular organization of these toxin genes in strain 68111. MSSA68111 carries the PVL genes within a novel temperate prophage we call ФPVLv68111 that is most similar, though not identical, to phage ФPVL – a phage type that is relatively rare worldwide. The TSST-1 gene (tst) in MSSA68111 is carried on a unique staphylococcal pathogenicity island (SaPI) we call SaPI68111. Features of SaPI68111 suggest it likely arose through multiple major recombination events with other known SaPIs. Both ФPVLv68111 and SaPI68111 are fully mobilizable and therefore transmissible to other strains. Taken together, these findings suggest that hypervirulent S. aureus have the potential to emerge worldwide
    • …
    corecore