1,630 research outputs found

    Preliminary Findings for STEM Undergraduate Research Mentoring Across Neurodiversity

    Get PDF

    Culture of Sea Cucumbers in Korea: A Guide to Korean Methods and the Local Sea Cucumber in the Northeast U.S.

    Get PDF
    In an effort to develop suitable culture techniques for sea cucumber (Cucumaria frondosa) in the Northeast, this guide reviews the current knowledge of C. frondosa biology and reports on techniques for the hatchery culture of the Japanese sea cucumber Apostichopus japonicus learned during a research exchange between the United States (NOAA Sea Grant) and South Korea (National Fisheries Research and Development Institute). The final portion of the guide discusses the potential adoption of the culture techniques for A. japonicus for use with C. frondosa

    Culture of Sea Cucumbers in Korea: A guide to Korean methods and the local sea cucumber in the Northeast U.S.

    Get PDF
    A paper exploring the potential to grow Korean sea cucumbers in the Northeast of the United States. This paper examines the life history and biology of the Korean cucumber (Cucumaria Frondosa), Korean hatchery culture techniques, Korean sea cucumber culture process, and the viability of culturing the Korean sea cucumber in the Northeast

    Inducing Partner Preference in Mice by Chemogenetic Stimulation of CA2 Hippocampal Subfield

    Get PDF
    Social recognition is fundamental for social decision making and the establishment of long-lasting affiliative behaviors in behaviorally complex social groups. It is a critical step in establishing a selective preference for a social partner or group member. C57BL/6J lab mice do not form monogamous relationships, and typically do not show prolonged social preferences for familiar mice. The CA2 hippocampal subfield plays a crucial role in social memory and optogenetic stimulation of inputs to the dorsal CA2 field during a short memory acquisition period can enhance and extend social memories in mice. Here, we show that partner preference in mice can be induced by chemogenetic selective stimulation of the monosynaptic projections from the hypothalamic paraventricular nucleus (PVN) to the CA2 during the cohabitation period. Specifically, male mice spend more time in social contact, grooming and huddling with the partner compared to a novel female. Preference was not induced by prolonging the cohabitation period and allowing more time for social interactions and males to sire pups with the familiar female. These results suggest that PVN-to-CA2 projections are part of an evolutionarily conserved neural circuitry underlying the formation of social preference and may promote behavioral changes with appropriate stimulation

    Retelling racialized violence, remaking white innocence: the politics of interlocking oppressions in transgender day of remembrance

    Get PDF
    Transgender Day of Remembrance has become a significant political event among those resisting violence against gender-variant persons. Commemorated in more than 250 locations worldwide, this day honors individuals who were killed due to anti-transgender hatred or prejudice. However, by focusing on transphobia as the definitive cause of violence, this ritual potentially obscures the ways in which hierarchies of race, class, and sexuality constitute such acts. Taking the Transgender Day of Remembrance/Remembering Our Dead project as a case study for considering the politics of memorialization, as well as tracing the narrative history of the Fred F. C. Martinez murder case in Colorado, the author argues that deracialized accounts of violence produce seemingly innocent White witnesses who can consume these spectacles of domination without confronting their own complicity in such acts. The author suggests that remembrance practices require critical rethinking if we are to confront violence in more effective ways. Description from publisher's site: http://caliber.ucpress.net/doi/abs/10.1525/srsp.2008.5.1.2

    The stroke oxygen pilot study: a randomized control trial of the effects of routine oxygen supplementation early after acute stroke--effect on key outcomes at six months

    Get PDF
    Introduction: Post-stroke hypoxia is common, and may adversely affect outcome. We have recently shown that oxygen supplementation may improve early neurological recovery. Here, we report the six-month outcomes of this pilot study. Methods: Patients with a clinical diagnosis of acute stroke were randomized within 24 h of admission to oxygen supplementation at 2 or 3 L/min for 72 h or to control treatment (room air). Outcomes (see below) were assessed by postal questionnaire at 6 months. Analysis was by intention-to-treat, and statistical significance was set at p#0.05. Results: Out of 301 patients randomized two refused/withdrew consent and 289 (148 in the oxygen and 141 in the control group) were included in the analysis: males 44%, 51%; mean (SD) age 73 (12), 71 (12); median (IQR) National Institutes of Health Stroke Scale score 6 (3, 10), 5 (3, 10) for the two groups respectively. At six months 22 (15%) patients in the oxygen group and 20 (14%) in the control group had died; mean survival in both groups was 162 days (p= 0.99). Median (IQR) scores for the primary outcome, the modified Rankin Scale, were 3 (1, 5) and 3 (1, 4) for the oxygen and control groups respectively. The covariate-adjusted odds ratio was 1.04 (95% CI 0.67, 1.60), indicating that the odds of a lower (i.e. better) score were non-significantly higher in the oxygen group (p= 0.86). The mean differences in the ability to perform basic (Barthel Index) and extended activities of daily living (NEADL), and quality of life (EuroQol) were also non-significant. Conclusions: None of the key outcomes differed at 6 months between the groups. Although not statistically significant and generally of small magnitude, the effects were predominantly in favour of the oxygen group; a larger trial, powered to show differences in longer-term functional outcomes, is now on-going. Trial Registration: Controlled-Trials.com ISRCTN12362720; Eudract.ema.europa.eu 2004-001866-4

    Optimization and validation of the NeuroLux wireless optoelectronics system for optogenetics

    Get PDF
    Utilizing light and genetic engineering, optogenetics permits the manipulation of events within cells via light using the light-sensitive properties of single-component microbial opsins. Microbial opsins are activated by a light source, such as lasers, light-emitting diodes, and incandescent sources that deliver light to the region of interest either directly or indirectly, such as through fiberoptics. In classical in vivo optogenetics, the wiring of optic fibers necessitates tethering of animals by the optic fiber to the light source. The novel NeuroLux wireless optoelectronic system for optogenetics circumvents issues pertaining to classical optogenetics by utilizing near-field power transfer via magnetic coil antennae to power miniature, subdermal, and flexible optoelectronic implants, including an LED light sources. Furthermore, features of the NeuroLux system overcome issues posed by other wireless systems, including interference. This preliminary study sought to validate and optimize the novel NeuroLux system setup by stimulating the cornu ammonis 2 (CA2) region of the hippocampus in transgenic mice that express Cre recombinase from the vasopressin 1b receptor promoter. Following experimentation, distinct stimulation, indicated by quantified cFos expression, was noted in the CA2 region, thereby validating the use of the NeuroLux wireless optoelectronics system for future optogenetics studies
    corecore