12 research outputs found

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Selective targeting of the LIGHT-HVEM costimulatory system for the treatment of graft-versus-host disease

    No full text
    Decoy lymphotoxin β receptor (LTβR) has potent immune inhibitory activities and thus represents a promising biologic for the treatment of inflammation, autoimmune diseases, and graft-versus-host disease (GVHD). As this reagent interrupts multiple molecular interactions, including LTβ-LTβR and LIGHT-HVEM/LTβR, underlying molecular mechanisms have yet to be fully understood. In this study, we demonstrate that blockade of the LIGHT-HVEM pathway is sufficient to induce amelioration of GVHD in mouse models. Anti–host cytotoxic T lymphocyte (CTL) activity following in vivo transfer of allogeneic lymphocytes was completely abrogated when LIGHT- or HVEM-deficient (KO) T cells were used as donor cells. Accordingly, survival of the recipient mice following the transfer of allogeneic bone marrow cells plus LIGHT-KO or HVEM-KO T cells was significantly prolonged. In the absence of LIGHT-HVEM costimulation, alloreactive donor T cells undergo vigorous apoptosis while their proliferative potential remains intact. Furthermore, we prepared a neutralizing monoclonal antibody (mAb) specific to HVEM and showed that administration of anti–HVEM mAb profoundly ameliorated GVHD and led to complete hematopoietic chimerism with donor cells. Collectively, our results demonstrate an indispensable role of LIGHT-HVEM costimulation in the pathogenesis of GVHD and illustrate a novel target for selective immunotherapy in allogeneic bone marrow transplantation

    B7-H2 Is a Costimulatory Ligand for CD28 in Human

    Get PDF
    SummaryCD28 and CTLA-4 are cell surface cosignaling molecules essential for the control of T cell activation upon the engagement of their ligands B7-1 and B7-2 from antigen-presenting cells. By employing a receptor array assay, we have demonstrated that B7-H2, best known as the ligand of inducible costimulator, was a ligand for CD28 and CTLA-4 in human, whereas these interactions were not conserved in mouse. B7-H2 and B7-1 or B7-2 interacted with CD28 through distinctive domains. B7-H2-CD28 interaction was essential for the costimulation of human T cells' primary responses to allogeneic antigens and memory recall responses. Similar to B7-1 and B7-2, B7-H2 costimulation via CD28 induced survival factor Bcl-xL, downregulated cell cycle inhibitor p27kip1, and triggered signaling cascade of ERK and AKT kinase-dependent pathways. Our findings warrant re-evaluation of CD28 and CTLA-4's functions previously attributed exclusively to B7-1 and B7-2 and have important implications in therapeutic interventions against human diseases

    Evaluation of Oral Baits and Distribution Methods for Tasmanian Devils (\u3ci\u3eSarcophilus harrisii\u3c/i\u3e)

    Get PDF
    Context Diseases are increasingly contributing to wildlife population declines. Tasmanian devil (Sarcophilus harrisii) populations have locally declined by 82%, largely owing to the morbidity and mortality associated with two independent transmissible devil facial tumours (DFT1 and DFT2). Toxic baits are often used as a management tool for controlling vertebrate pest populations in Australia, but in other areas of the world, oral baits are also used to deliver vaccines or pharmaceuticals to wildlife. Aim Our goal was to evaluate the potential use of edible baits as vehicles for vaccine delivery to Tasmanian devils. Method We first tested bait palatability with captive devils. Bait interactions were recorded, and consumption and bait interaction behaviours were quantified. We next trialled baits containing inert capsules as potential vaccine containers in captivity. After confirming bait palatability in captivity, ground baiting was trialled at six field sites and monitored using camera traps. Finally, an automated bait dispenser was trialled at field sites to attempt to limit bait consumption by non-target species. Key results Captive devils consumed all types of placebo baits, but consumed a higher percentage of ruminant-and fish-based baits than cereal-based baits. Captive devils also consumed inert capsules inserted into placebo baits. Ground-baiting trials in the field showed that 53% of baits were removed from bait stations, with 76% of the removals occurring on the first night. Devils were suspected or confirmed to remove about 7% of baits compared with 93% by non-target species. We also evaluated an automated bait dispenser, which reduced bait removal by non-target species and resulted in over 50% of the baits being removed by devils. Conclusions This study demonstrated that captive and wild devils will accept and consume placebo versions of commercial baits. Bait dispensers or modified baits or baiting strategies are needed to increase bait uptake by devils. Implications Bait dispensers can be used at a regional scale to deliver baits to devils. These could potentially be used as vaccine-delivery vehicles to mitigate the impacts of disease on devil populations

    Applied ecoimmunology: using immunological tools to improve conservation efforts in a changing world

    No full text
    Ecoimmunology is a rapidly developing field that explores how the environment shapes immune function, which in turn influences host–parasite relationships and disease outcomes. Host immune defence is a key fitness determinant because it underlies the capacity of animals to resist or tolerate potential infections. Importantly, immune function can be suppressed, depressed, reconfigured or stimulated by exposure to rapidly changing environmental drivers like temperature, pollutants and food availability. Thus, hosts may experience trade-offs resulting from altered investment in immune function under environmental stressors. As such, approaches in ecoimmunology can provide powerful tools to assist in the conservation of wildlife. Here, we provide case studies that explore the diverse ways that ecoimmunology can inform and advance conservation efforts, from understanding how Galapagos finches will fare with introduced parasites, to using methods from human oncology to design vaccines against a transmissible cancer in Tasmanian devils. In addition, we discuss the future of ecoimmunology and present 10 questions that can help guide this emerging field to better inform conservation decisions and biodiversity protection. From better linking changes in immune function to disease outcomes under different environmental conditions, to understanding how individual variation contributes to disease dynamics in wild populations, there is immense potential for ecoimmunology to inform the conservation of imperilled hosts in the face of new and re-emerging pathogens, in addition to improving the detection and management of emerging potential zoonoses

    B7-H4–deficient mice display augmented neutrophil-mediated innate immunity

    No full text
    B7-H4 is an immunoglobulin superfamily molecule and shown to be inhibitory for T-cell responses. To explore physiologic roles of B7-H4, we created B7-H4–deficient (KO) mice by genetic targeting. B7-H4KO mice are healthy and their T- and B-cell responses to polyclonal antigens are in normal range. However, B7-H4KO mice are more resistant to infection by Listeria monocytogenes than their littermates. Within 3 days after infection, bacterial colonies in livers and spleens are significantly lower than the controls, suggesting a role of B7-H4 in enhancing innate immunity. Further studies demonstrate that neutrophils increase in peripheral organs of B7-H4KO mice more so than their littermates but their bactericidal functions remain unchanged. Augmented innate resistance is completely dependent on neutrophils, even in the absence of adaptive immunity. In vitro B7-H4 inhibits the growth of bone marrow–derived neutrophil progenitors, suggesting an inhibitory function of B7-H4 in neutrophil expansion. Our results identify B7-H4 as a negative regulator of the neutrophil response to infection and provide a new target for manipulation of innate immunity
    corecore