1,045 research outputs found

    Case-Building Behavior, Persistence, and Emergence Success of \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Walker) (Trichoptera: Limnephilidae) in Laboratory and \u3ci\u3ein situ\u3c/i\u3e Environments: Potential Trade-Offs of Material Preference

    Get PDF
    When removed from their cases in a non-flow laboratory environment, 5th instar Pycnopsyche guttifer (Walker) larvae were always successful in constructing a new case within 24 h when woody debris was present as a material choice. Most were successful within 1 h. Larvae were never successful at case building in the absence of wood in a non-flow environment. These laboratory-constructed ‘emergency cases’ were flimsy, lacking in shape, and larger than field cases. Laboratory case size, shape, and material preference remained constant after repeated daily evacuations over a series of 10 days. Larvae could be induced to construct a case composed of mineral particles only in the absence of wood and when placed in a laboratory stream with simulated flow conditions, or in situ in a natural stream. The emergence success of P. guttifer specimens induced to build these mineral cases, however, was significantly higher than that of larvae remaining in their field cases or of larvae that built wood cases. This result is likely due to a fungal infection that affected only larvae in wood cases. Our results demonstrate a scenario where a clearly non-preferred case construction material appears to increase survival

    Porphyrin Derivatives and Photodynamic Therapy Effects on Triple Negative Breast Cancer

    Get PDF
    There are limited effective options for treatment of triple negative breast cancer (TNBC) due to its lack of the three receptors typically used to target breast cancer. The use of photodynamic therapy (PDT) to kill cells that take up light-absorbing compounds (PDT agents) may be an effective option to treat TNBC. We tested the efficacy of modified porphyrins as PDT agents against cells from TNBC. We compared these to Foscan, which is similar in structure to porphyrins and has been approved for use in Europe. Our 1st goal was to measure which porphyrins were taken up best by TNBC cells. Measuring the uptake of some of our compounds had been problematic due to their hydrophobic nature. We optimized the uptake protocol and showed that TNBC cells take up the compounds to different extents. One of the primary side effects of PDT is skin toxicity for up to 4-6 weeks after treatment due to exposure to sunlight. Our 2nd goal was to compare the toxicity in the light and in the dark of PipOH, H2TPPC, and Foscan. In previous experiments, Foscan showed dark toxicity at low concentrations, but in these experiments there was variability in our results with Foscan so no clear comparison could be drawn. Our 3rd goal was to find combinations of PDT agent and concentration that are effective on TNBC cells at high light energy but minimize killing cells with ambient light. We measured the effect on cell killing by varying both the light dose and the concentration of 3 compounds to find concentrations that are effective at high doses of light but minimize toxicity at moderate doses. All 3 compounds show promise, but the dose must be carefully selected

    On the mechanical properties of N-functionalised dipeptide gels

    Get PDF
    The properties of a hydrogel are controlled by the underlying network that immobilizes the solvent. For gels formed by the self-assembly of a small molecule, it is common to show the primary fibres that entangle to form the network by microscopy, but it is difficult to access information about the network. One approach to understand the network is to examine the effect of the concentration on the rheological properties, such that G cx, where G is the storage modulus and c is the concentration. A number of reports link the exponent x to a specific type of network. Here, we discuss a small library of gels formed using functionalized dipeptides, and describe the underlying networks of these gels, using microscopy, small angle scattering and rheology. We show that apparently different networks can give very similar values of x

    Case-Building Behavior, Persistence, and Emergence Success of \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Walker) (Trichoptera: Limnephilidae) in Laboratory and \u3ci\u3ein situ\u3c/i\u3e Environments: Potential Trade-Offs of Material Preference

    Get PDF
    When removed from their cases in a non-flow laboratory environment, 5th instar Pycnopsyche guttifer (Walker) larvae were always successful in constructing a new case within 24 h when woody debris was present as a material choice. Most were successful within 1 h. Larvae were never successful at case building in the absence of wood in a non-flow environment. These laboratory-constructed ‘emergency cases’ were flimsy, lacking in shape, and larger than field cases. Laboratory case size, shape, and material preference remained constant after repeated daily evacuations over a series of 10 days. Larvae could be induced to construct a case composed of mineral particles only in the absence of wood and when placed in a laboratory stream with simulated flow conditions, or in situ in a natural stream. The emergence success of P. guttifer specimens induced to build these mineral cases, however, was significantly higher than that of larvae remaining in their field cases or of larvae that built wood cases. This result is likely due to a fungal infection that affected only larvae in wood cases. Our results demonstrate a scenario where a clearly non-preferred case construction material appears to increase survival

    Sulfosuccinate and Sulfocarballylate Surfactants As Charge Control Additives in Nonpolar Solvents

    Get PDF
    A series of eight sodium sulfonic acid surfactants with differently branched tails (four double-chain sulfosuccinates and four triple-chain sulfocarballylates) were studied as charging agents for sterically stabilized poly­(methyl methacrylate) (PMMA) latexes in dodecane. Tail branching was found to have no significant effect on the electrophoretic mobility of the latexes, but the number of tails was found to influence the electrophoretic mobility. Triple-chain, sulfocarballylate surfactants were found to be more effective. Several possible origins of this observation were explored by comparing sodium dioctylsulfosuccinate (AOT1) and sodium trioctylsulfocarballylate (TC1) using identical approaches: the inverse micelle size, the propensity for ion dissociation, the electrical conductivity, the electrokinetic or ζ potential, and contrast-variation small-angle neutron scattering. The most likely origin of the increased ability of TC1 to charge PMMA latexes is a larger number of inverse micelles. These experiments demonstrate a small molecular variation that can be made to influence the ability of surfactants to charge particles in nonpolar solvents, and modifying molecular structure is a promising approach to developing more effective charging agents

    Satellite Imagery in the Study and Forecast of Malaria

    Get PDF
    More than 30 years ago, human beings looked back from the Moon to see the magnificent spectacle of Earthrise. The technology that put us into space has since been used to assess the damage we are doing to our natural environment and is now being harnessed to monitor and predict diseases through space and time. Satellite sensor data promise the development of early-warning systems for diseases such as malaria, which kills between 1 and 2 million people each year

    Mixed liposomes containing gram-positive bacteria lipids:Lipoteichoic acid (LTA) induced structural changes

    Get PDF
    Lipoteichoic acid (LTA), a surface associated polymer amphiphile tethered directly to the Gram-positive bacterial cytoplasmic membrane, is a key structural and functional membrane component. Its composition in the membrane is regulated by bacteria under different physiological conditions. How such LTA compositional variations modulate the membrane structural stability and integrity is poorly understood. Here, we have investigated structural changes in mixed liposomes mimicking the lipid composition of Gram-positive bacteria membranes, in which the concentration of Bacillus Subtilis LTA was varied between 0–15 mol%. Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements indicated formation of mixed unilamellar vesicles, presumably stabilized by the negatively charged LTA polyphosphates. The vesicle size increased with the LTA molar concentration up to ∼6.5 mol%, accompanied by a broadened size distribution, and further increasing the LTA concentration led to a decrease in the vesicle size. At 80 °C, SANS analyses showed the formation of larger vesicles with thinner shells. Complementary Cryo-TEM imaging confirmed the vesicle formation and the size increase with LTA addition, as well as the presence of interconnected spherical aggregates of smaller size at higher LTA concentrations. The results are discussed in light of the steric and electrostatic interactions of the bulky LTA molecules with increased chain fluidity at the higher temperature, which affect the molecular packing and interactions, and thus depend on the LTA composition, in the membrane

    LOOP:A physical artifact to facilitate seamless interaction with personal data in everyday life

    Get PDF
    We investigated how a physical artifact could support seamless interaction with personal activity data in everyday life. We introduce LOOP (Figure 1), a physical artifact that changes its shape according to the activity data of the owner, providing an abstract visualization. This paper reports on the design process of LOOP that was informed by interviews and co-creation sessions with end users. We conclude with future work on the evaluation of the concept. This paper makes two main contributions. Firstly, LOOP is proposed as an example of an alternative approach to physically represent activity data. Secondly, the design process and rationale behind LOOP are presented as design knowledge
    • …
    corecore