8 research outputs found

    Chiral Polymerization in Open Systems From Chiral-Selective Reaction Rates

    Full text link
    We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.Comment: 15 pages, 6 figures, accepted for publication in Origins of Life and Evolution of Biosphere

    A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer

    Get PDF
    Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface () for exploring the harmonized interpretations from these six knowledgebases

    A harmonized meta-knowledgebase of clinical interpretations of somatic genomic variants in cancer.

    No full text
    Precision oncology relies on accurate discovery and interpretation of genomic variants, enabling individualized diagnosis, prognosis and therapy selection. We found that six prominent somatic cancer variant knowledgebases were highly disparate in content, structure and supporting primary literature, impeding consensus when evaluating variants and their relevance in a clinical setting. We developed a framework for harmonizing variant interpretations to produce a meta-knowledgebase of 12,856 aggregate interpretations. We demonstrated large gains in overlap between resources across variants, diseases and drugs as a result of this harmonization. We subsequently demonstrated improved matching between a patient cohort and harmonized interpretations of potential clinical significance, observing an increase from an average of 33% per individual knowledgebase to 57% in aggregate. Our analyses illuminate the need for open, interoperable sharing of variant interpretation data. We also provide a freely available web interface (search.cancervariants.org) for exploring the harmonized interpretations from these six knowledgebases

    Human Microbiome: Composition and Role in Inflammatory Skin Diseases

    No full text
    This review focuses on recent evidences about human microbiome composition and functions, exploring the potential implication of its impairment in some diffuse and invalidating inflammatory skin diseases, such as atopic dermatitis, psoriasis, hidradenitis suppurativa and acne. We analysed current scientific literature, focusing on the current evidences about gut and skin microbiome composition and the complex dialogue between microbes and the host. Finally, we examined the consequences of this dialogue for health and skin diseases. This review highlights how human microbes interact with different anatomic niches modifying the state of immune activation, skin barrier status, microbe-host and microbe-microbe interactions. It also shows as most of the factors affecting gut and skin microorganisms' activity have demonstrated to be effective also in modulating chronic inflammatory skin diseases. More and more evidences demonstrate that human microbiome plays a key role in human health and diseases. It is to be expected that these new insights will translate into diagnostic, therapeutic and preventive measures in the context of personalized/precision medicine

    Human Microbiome: Composition and Role in Inflammatory Skin Diseases

    No full text
    corecore