1,814 research outputs found

    Importin-beta and CRM1 control a RANBP2 spatiotemporal switch essential for mitotic kinetochore function

    Get PDF
    Protein conjugation with small ubiquitin-related modifier (SUMO) is a post-translational modification that modulates protein interactions and localisation. RANBP2 is a large nucleoporin endowed with SUMO E3 ligase and SUMO-stabilising activity, and is implicated in some cancer types. RANBP2 is part of a larger complex, consisting of SUMO-modified RANGAP1, the GTP-hydrolysis activating factor for the GTPase RAN. During mitosis, the RANBP2–SUMO-RANGAP1 complex localises to the mitotic spindle and to kinetochores after microtubule attachment. Here, we address the mechanisms that regulate this localisation and how they affect kinetochore functions. Using proximity ligation assays, we find that nuclear transport receptors importin-β and CRM1 play essential roles in localising the RANBP2–SUMO-RANGAP1 complex away from, or at kinetochores, respectively. Using newly generated inducible cell lines, we show that overexpression of nuclear transport receptors affects the timing of RANBP2 localisation in opposite ways. Concomitantly, kinetochore functions are also affected, including the accumulation of SUMO- conjugated topoisomerase-IIα and stability of kinetochore fibres. These results delineate a novel mechanism through which nuclear transport receptors govern the functional state of kinetochores by regulating the timely deposition of RANBP2

    Leveling Up Hydrogels:Hybrid Systems in Tissue Engineering

    Get PDF
    Hydrogels can mimic several features of the cell native microenvironment and have been widely used as synthetic extracellular matrices (ECMs) in tissue engineering and regenerative medicine (TERM). However, some applications have specifications that hydrogels cannot efficiently fulfill on their own. Incorporating reinforcing structures like fibrous scaffolds or particles into hydrogels, as hybrid systems, is a promising strategy to improve their functionality. We describe recent advances in the fabrication and application of these hybrid systems, where structural properties and stimuli responsiveness of hydrogels are enhanced while their ECM-like features are preserved. Furthermore, we discuss how these systems can contribute to the development of more complex tissue engineered structures in the rapidly evolving field of TERM

    Correction: Biofunctionalized pectin hydrogels as 3D cellular microenvironments

    Get PDF
    Correction for 'Biofunctionalized pectin hydrogels as 3D cellular microenvironments' by Sara C. Neves et al., J. Mater. Chem. B, 2015, 3, 2096–2108

    Size effects in finite element modelling of 3D printed bone scaffolds using hydroxyapatite PEOT/PBT composites

    Get PDF
    Additive manufacturing (AM) of scaffolds enables the fabrication of customized patient-specific implants for tissue regeneration. Scaffold customization does not involve only the mac-roscale shape of the final implant, but also their microscopic pore geometry and material properties, which are dependent on optimizable topology. A good match between the experimental data of AM scaffolds and the models is obtained when there is just a few millimetres at least in one direction. Here, we describe a methodology to perform finite element modelling on AM scaffolds for bone tissue regeneration with clinically relevant dimensions (i.e., volume > 1 cm3). The simulation used an equivalent cubic eight node finite elements mesh, and the materials properties were derived both empirically and numerically, from bulk material direct testing and simulated tests on scaffolds. The experimental validation was performed using poly(ethylene oxide terephthalate)-poly(butylene ter-ephthalate) (PEOT/PBT) copolymers and 45 wt% nano hydroxyapatite fillers composites. By applying this methodology on three separate scaffold architectures with volumes larger than 1 cm3, the simulations overestimated the scaffold performance, resulting in 150–290% stiffer than average values obtained in the validation tests. The results mismatch highlighted the relevance of the lack of printing accuracy that is characteristic of the additive manufacturing process. Accordingly, a sensi-tivity analysis was performed on nine detected uncertainty sources, studying their influence. After the definition of acceptable execution tolerances and reliability levels, a design factor was defined to calibrate the methodology under expectable and conservative scenarios.This research was funded by the European Union, represented by the European Commission, grant number 685825-FAST-H2020-NMP-2014-2015/H2020-NMP-PILOTS-2015

    Staphylococcus aureus nosocomial infections: The role of a rapid and low-cost characterization for the establishment of a surveillance system

    Get PDF
    Continuous surveillance on resistance patterns and characterization of Staphylococcus aureus represent simple and low-cost techniques to understand and evaluate the effectiveness of infection control and antimicrobial prescribing measures. In this study we analyzed the antibiotic susceptibility and trends for S. aureus strains collected from bacteraemia cases in a five year period. Between 2004 and 2008 we noted a progressive decrease in the number of S. aureus isolates compared to all pathogens from clinical specimens and S. aureus bloodstream infections (BSI) reflected a similar trend. In particular we analyzed 185 isolates from blood cultures: 89 isolates were MSSA and 96 isolates were MRSA. Molecular SCCmec typing of these strains showed an absolute prevalence of types I and II, whereas five spa types from 96 isolates were obtained. Resistance pattern analysis allowed us to place MRSA strains into 12 antibiotypes and the major antibiotype was resistant to penicillin, gentamicin, erythromycin, clindamycin and ciprofloxacin. The predominant antibiotype among the MSSA isolates was resistant only to penicillin. In addition, 19.1% of MSSA are susceptible to all antibiotics tested. We also found a close association between antibiotyping 1 and genotyping t002/SCCmecI of MRSA strains, suggesting a nosocomial scenario dominated by a few particular clones

    Back to the Past. The paleogeography as key to understand the Middle Palaeolithic peopling at Grotta dei Santi (Mt Argentario – Tuscany)

    Get PDF
    The mobility of hunter-gatherer groups is crucial in understanding Palaeolithic settlement dynamics. The concept of mobility cannot be separated from the space in which it occurs, including landscape components, localization of critical resources and of other sites, and routes between them. Nevertheless, the landscape is not constant in time due to the geomorphological changes that occurred in the long timescale of Prehistory. Here we present a paleogeographic reconstruction of the coastal area around Grotta dei Santi during the Neandertal occupation. A GIS-based approach, combining geological, bathymetric, and sea-level fluctuations data, allows us to reconstruct the landscape around the cave at about 45 ky BP. The cave today opens onto a cliff facing the sea. The Neandertal occupation occurred with a sea-level 74 m lower than present-day. Consequently, the cave faced a vast coastal plain, playing a strategic role due to its position, allowing both proximity and control of essential resources

    Paleogeographic reconstruction of the Tuscan coastal area nearby Grotta dei Santi (Monte Argentario, Italy) during the Neandertal occupation

    Get PDF
    The mobility of hunter-gatherer groups is crucial in understanding Palaeolithic settlement dynamics. The concept of mobility cannot be separated from the space in which it occurs, including landscape components, localization of critical resources and of other sites, and routes between them. Nevertheless, the landscape is not constant in time due to the geomorphological changes that occurred in the long timescale of Prehistory. Here we present a paleogeographic reconstruction of the coastal area around Grotta dei Santi during the Neandertal occupation. A GIS-based approach, combining geological, bathymetric, and sea-level fluctuations data, allows us to reconstruct the landscape around the cave at about 45 ky BP. The cave today opens onto a cliff facing the sea. The Neandertal occupation occurred with a sea-level 74 m lower than present-day. Consequently, the cave faced a vast coastal plain, playing a strategic role due to its position, allowing both proximity and control of essential resources. © 2022 IMEKO TC-4 International Conference on Metrology for Archaeology and Cultural Heritage, MetroArchaeo 2022.All rights reserved

    Additive Manufactured Scaffolds for Bone Tissue Engineering: Physical Characterization of Thermoplastic Composites with Functional Fillers

    Get PDF
    Thermoplastic polymer–filler composites are excellent materials for bone tissue engineering (TE) scaffolds, combining the functionality of fillers with suitable load-bearing ability, biodegradability, and additive manufacturing (AM) compatibility of the polymer. Two key determinants of their utility are their rheological behavior in the molten state, determining AM processability and their mechanical load-bearing properties. We report here the characterization of both these physical properties for four bone TE relevant composite formulations with poly(ethylene oxide terephthalate)/poly(butylene terephthalate (PEOT/PBT) as a base polymer, which is often used to fabricate TE scaffolds. The fillers used were reduced graphene oxide (rGO), hydroxyapatite (HA), gentamicin intercalated in zirconium phosphate (ZrP-GTM) and ciprofloxacin intercalated in MgAl layered double hydroxide (MgAl-CFX). The rheological assessment showed that generally the viscous behavior dominated the elastic behavior (G″ > G′) for the studied composites, at empirically determined extrusion temperatures. Coupled rheological–thermal characterization of ZrP-GTM and HA composites showed that the fillers increased the solidification temperatures of the polymer melts during cooling. Both these findings have implications for the required extrusion temperatures and bonding between layers. Mechanical tests showed that the fillers generally not only made the polymer stiffer but more brittle in proportion to the filler fractions. Furthermore, the elastic moduli of scaffolds did not directly correlate with the corresponding bulk material properties, implying composite-specific AM processing effects on the mechanical properties. Finally, we show computational models to predict multimaterial scaffold elastic moduli using measured single material scaffold and bulk moduli. The reported characterizations are essential for assessing the AM processability and ultimately the suitability of the manufactured scaffolds for the envisioned bone regeneration application.The work was supported by a Horizon 2020 Research and Innovation Programme grant from the European Union, called the FAST project (grant no. 685825, project website: http:// project-fast.eu). The authors acknowledge the support of the FAST project consortium for the various aspects of this wor

    ANCA-associated vasculitis in childhood: Recent advances

    Get PDF
    Abstract Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides are rare systemic diseases that usually occur in adulthood. They comprise granulomatosis with polyangiitis (GPA, Wegener’s), microscopic polyangiitis (MPA) and eosinophilic granulomatosis with polyangiitis (EGPA, Churg-Strauss syndrome). Their clinical presentation is often heterogeneous, with frequent involvement of the respiratory tract, the kidney, the skin and the joints. ANCA-associated vasculitis is rare in childhood but North-American and European cohort studies performed during the last decade have clarified their phenotype, patterns of renal involvement and their prognostic implications, and outcome. Herein, we review the main clinical and therapeutic aspects of childhood-onset ANCA-associated vasculitis, and provide preliminary data on demographic characteristics and organ manifestations of an Italian multicentre cohort
    • …
    corecore