112 research outputs found

    Notch: From fly wings to human hematological tumors

    Get PDF
    Notch history begins in 1919 with Thomas Hunt Morgan studies on fruit fly mutants. From then, this gene aroused lively interest in the scientific community since it is involved in a wide variety of processes, including morphogenesis, tissue homeostasis, and stem cell maintenance. Deregulation of Notch signaling characterizes several human tumors. Hematopoietic system is affected by mutations of Notch receptors, Notch ligands, and proteins controlling their stability. Approximately 60% T acute lymphoblastic leukemia (T-ALL) patients carry activating Notch1 mutations prompting blasts growth. In addition, multiple myeloma is characterized by Notch signaling hyper-activation due to an abnormal expression of the Jagged2 ligand; this affects not only myeloma cells, but also their interaction with bone marrow microenvironment, influencing tumor burden and bone disease. These findings make Notch a rational target of a therapeutic approach. Inhibitors of the Notch activating enzyme, ?-Secretase, have been successfully used in vitro and in vivo and are currently under clinical trials for T-ALL and breast cancer. Yet a wide use of these inhibitors is prevented by frequently occurring drug resistance. To elucidate the mechanism underlying this phenomenon, a number of pathways have been identified mediating Notch biological effects: AKT and c-Myc are frequently deregulated in leukemic patients and account for resistance to ?-Secretase inhibitors by acting downstream Notch receptor. Therefore, the interaction of Notch with other cancer-associated proteins should be clarified to predict the biological outcome of a Notch targeted therapy and possibly, to exploit combined treatments against the key deregulated elements in Notch-associated cancers

    Fatty Acid Profile of Mature Red Blood Cell Membranes and Dietary Intake as a New Approach to Characterize Children with Overweight and Obesity

    Get PDF
    Obesity is a chronic metabolic disease of high complexity and of multifactorial origin. Understanding the effects of nutrition on childhood obesity metabolism remains a challenge. The aim of this study was to determine the fatty acid (FA) profile of red blood cell (RBC) membranes as a comprehensive biomarker of children's obesity metabolism, together with the evaluation of their dietary intake. An observational study was carried out on 209 children (107 healthy controls, 41 who were overweight and 61 with obesity) between 6 and 16 years of age. Mature RBC membrane phospholipids were analyzed for FA composition by gas chromatography-mass spectrometry (GC-MS). Dietary habits were evaluated using validated food frequency questionnaires (FFQ) and the Mediterranean Diet Quality Index for children (KIDMED) test. Compared to children with normal weight, children with obesity showed an inflammatory profile in mature RBC FAs, evidenced by higher levels of omega-6 polyunsaturated FAs (mainly arachidonic acid, p < 0.001). Children who were overweight or obese presented lower levels of monounsaturated FA (MUFA) compared to children with normal weight (p = 0.001 and p = 0.03, respectively), resulting in an increased saturated fatty acid (SFA)/MUFA ratio. A lower intake of nuts was observed for children with obesity. A comprehensive membrane lipidomic profile approach in children with obesity will contribute to a better understanding of the metabolic differences present in these individuals.This work was supported by the Department of Environment: Territorial Planning: Agriculture and Fisheries of the Basque Country Government (ELKARTEK 2017: and Innovation Fund 2017); the Department of Health of the Basque Government (2017222033: OBESIA 2016-2019); the Centre for the Development of Industrial Technology (CDTI) of the Spanish Ministry of Science and Innovation under the grant agreement: TECNOMIFOOD project (CER-20191010); the INC (INTERNATIONAL NUT AND DRIED FRUIT COUNCIL) under the grant agreement OBINUT project (2016(II)-R01)

    Angiotensin ii type 2 receptor agonist, compound 21, prevents tubular epithelial cell damage caused by renal ischemia

    Get PDF
    During ischemic acute kidney injury (AKI), loss of cytoskeletal integrity and disruption of intercellular junctions are rapid events in response to ATP depletion. Angiotensin II type 2 receptor (AT2R) is overexpressed in injury situations and its stimulation by angiotensin II (AngII) is related to beneficial renal effects. Its role on ischemic AKI has not been deeply studied. The aim of the present study was to investigate whether pretreatment with the AT2R agonist, C21, prevents ischemic renal epithelial cell injury. Studies in a model of 40 min of renal ischemia followed by 24 h of reperfusion (IR) in rats demonstrated that C21 pretreatment attenuated renal dysfunction and induced better preservation of tubular architecture. In addition, we studied the expression of Rho GTPases, RhoA and Cdc42, since they are key proteins in the regulation of the actin cytoskeleton and the stability of epithelial intercellular junctions. IR downregulated RhoA and Cdc42 abundance in rat kidneys. C21 pretreatment prevented RhoA reduction and increased Cdc42 abundance compared to controls. We also used an in vitro model of ATP depletion in MDCK cells grown on filter support. Using immunofluorescence we observed that in MDCK cells, C21 pretreatment prevented the ATP depletion-induced reduction of actin in brush border microvilli and in stress fibers. Moreover, C21 prevented membrane E-cadherin reduction, and RhoA and Cdc42 downregulation. The present study describes for the first time a renoprotective effect of the AT2R agonist, C21, against AKI, and provides evidence supporting that stimulation of AT2R triggers cytoprotective mechanisms against an ischemic event.Fil: Fussi, María Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Ciencias Fisiológicas. Area Farmacología; ArgentinaFil: Hidalgo, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Fisiología Experimental. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Fisiología Experimental; ArgentinaFil: Buono, Gabriel Marcelo. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Ciencias Fisiológicas. Area Farmacología; ArgentinaFil: Marquez, Susana Beatriz. Universidad Nacional de Rosario. Facultad de Ciencias Médicas; ArgentinaFil: Pariani, Alejandro Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Fisiología Experimental. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Fisiología Experimental; ArgentinaFil: Molinas, Jorge Luis. Universidad Nacional de Rosario. Facultad de Cs.médicas. Escuela de Cs.médicas. Cátedra de Fisiología; ArgentinaFil: Larocca, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Fisiología Experimental. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Fisiología Experimental; ArgentinaFil: Monasterolo, Liliana Alicia. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Ciencias Fisiológicas. Area Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Molinas, Sara Maria. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmaceuticas. Departamento de Ciencias Fisiológicas. Area Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentin
    corecore