5,558 research outputs found

    An atypical case of trigeminal trophic syndrome: a legal medicine perspective in medical responsibility

    Get PDF
    BACKGROUND: Trigeminal trophic syndrome is a rare complication of peripheral or central damage to the trigeminal nerve characterized by anesthesia, paresthesia and a secondary persistent facial ulceration. METHODS: We describe the case of a 40-year-old woman with previous history of Le Fort I osteotomy for a class III malocclusion who developed trigeminal trophic syndrome. Atypically, the cutaneous symptoms appeared bilaterally and 8 years after surgery. RESULTS: Differential diagnosis was based on clinical history, tissue biopsy and serologic evaluation. Atypical findings could be linked to the surgical burdens of Le Fort I osteotomy, a procedure characterized by a bilateral incision on the maxillofacial bones with a reasonable probability of causing a bilateral injury of the peripheral branches of the trigeminal nerve. CONCLUSION: Although the long delay between trigeminal trophic syndrome onset and surgery and the absence of adequate medical evidence cannot confirm a link with previous surgery in this case, the increasing number of maxillofacial surgery cases suggests that this complication may be more frequent in the next decades, and thus, involved specialists should be aware of this condition as a possible complication of maxillofacial surgery procedures

    A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11

    Get PDF
    Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11 +/− spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11 −/− background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination

    Was there a COVID-19 harvesting effect in Northern Italy?

    Full text link
    We investigate the possibility of a harvesting effect, i.e. a temporary forward shift in mortality, associated with the COVID-19 pandemic by looking at the excess mortality trends of an area that registered one of the highest death tolls in the world during the first wave, Northern Italy. We do not find any evidence of a sizable COVID-19 harvesting effect, neither in the summer months after the slowdown of the first wave nor at the beginning of the second wave. According to our estimates, only a minor share of the total excess deaths detected in Northern Italian municipalities over the entire period under scrutiny (February - November 2020) can be attributed to an anticipatory role of COVID-19. A slightly higher share is detected for the most severely affected areas (the provinces of Bergamo and Brescia, in particular), but even in these territories, the harvesting effect can only account for less than 20% of excess deaths. Furthermore, the lower mortality rates observed in these areas at the beginning of the second wave may be due to several factors other than a harvesting effect, including behavioral change and some degree of temporary herd immunity. The very limited presence of short-run mortality displacement restates the case for containment policies aimed at minimizing the health impacts of the pandemic

    Operationalising Senian capability approach by modelling human development

    Get PDF
    Abstract: In this paper we model sustainable human development as intended in Sen’s capability approach in a system dynamic framework. Our purpose is to verify the variations over time of some achieved functionings, due to structural dynamics and to variations of the institutional setting and instrumental freedoms (IF Vortex). The model is composed of two sections. The ‘Left Side’ one points out the ‘demand’ for functionings in an ideal world situation. The real world one, on the ‘Right Side’ indicates the ‘supply’ of functionings that the socio-economic system is able to provide individuals with. The general model, specifically tailored for Italy, can be simulated over desired time horizons: for each time period, we carry out a comparison between ideal world and real world functionings. On the basis of their distances, the model simulates some responses of decision makers. These responses, in turn influenced by institutions and instrumental freedoms, ultimately affect the dynamics of real world functionings, i.e. of sustainable human development.Capabilities; Instrumental Freedoms; Sustainable Human Development

    Speckle-based imaging (SBI) applications with spectral photon counting detectors at the newly established OPTIMATO (OPTimal IMAging and TOmography) laboratory

    Get PDF
    Speckle-based imaging (SBI) is an advanced X-ray imaging technique that measures phase and dark-field signals, in addition to absorption signals. SBI uses random wavefront modulators to generate speckles and requires two images: one with a speckle pattern alone, and one with both the sample and speckles. SBI reconstruction algorithms retrieve three signals (transmission, refraction, and dark-field) by comparing the two images. In SBI, speckle visibility plays a crucial role in the retrieval of the three signals. When translating the technique from synchrotron sources to compact laboratory setups, the reduced coherence of the source and limitations in the available resolution yield lower speckle visibility, hampering the retrieval of phase and dark-field signals. In this context, direct-detection CdTe X-ray photon-counting detectors (XPCDs) provide an attractive solution, as they allow for a high detection efficiency and optimal spatial resolution enhancing speckle visibility. In this work, we present the newly established OPTIMATO (OPTimal IMAging and TOmography) laboratory for X-ray imaging hosted at the Elettra synchrotron (Trieste, Italy). The setup for SBI with resolutions up to 15 ÎŒm including an XPCD and a charge-integrating flat-panel detector (FPD) has been used to acquire SBI data. The main limiting factors when moving SBI applications from synchrotron facilities to compact laboratory setups are summarized. The advantages of XPCDs over FPDs are discussed by comparing the SBI images obtained using both detectors. The potential of the spectral decomposition approach via multi-threshold acquisitions using XPCDs is briefly introduced. The results shown in this work represent the first step toward the realization of a multimodal and multiresolution X-ray facility

    6G to Take the Digital Divide by Storm: Key Technologies and Trends to Bridge the Gap

    Get PDF
    The pandemic caused by COVID-19 has shed light on the urgency of bridging the digital divide to guarantee equity in the fruition of different services by all citizens. The inability to access the digital world may be due to a lack of network infrastructure, which we refer to as service-delivery divide, or to the physical conditions, handicaps, age, or digital illiteracy of the citizens, that is mentioned as service-fruition divide. In this paper, we discuss the way how future sixth-generation (6G) systems can remedy actual limitations in the realization of a truly digital world. Hence, we introduce the key technologies for bridging the digital gap and show how they can work in two use cases of particular importance, namely eHealth and education, where digital inequalities have been dramatically augmented by the pandemic. Finally, considerations about the socio-economical impacts of future 6G solutions are drawn

    Muscle Regeneration and Function in Sports: A Focus on Vitamin D

    Get PDF
    Muscle is one of the main targets for the biological effects of vitamin D. This hormone modulates several functions of skeletal muscles, from development to tissue repair after injury, through genomic and non-genomic mechanisms. Vitamin D deficiency and supplementation seem to significantly affect muscle strength in different populations, including athletes, although optimal serum 25(OH)D3 level for sport performance has not been defined so far. Additionally, vitamin D de- ficiency results in myopathy characterized by fast-twitch fiber atrophy, fatty infiltration, and fibrosis. However, less is known about regenerative effects of vitamin D supplementation after sport-related muscle injuries. Vitamin D receptor (VDR) is particularly expressed in the embryonic mesoderm during intrauterine life and in satellite cells at all stages of life for recovery of the skeletal muscle after injury. Vitamin D supplementation enhances muscle differentiation, growth, and regeneration by increasing the expression of myogenic factors in satellite cells. The objective of this narrative review is to describe the role of vitamin D in sport-related muscle injury and tissue regeneration

    Lactiplantibacillus plantarum Used as Single, Multiple, and Mixed Starter Combined with Candida boidinii for Table Olive Fermentations: Chemical, Textural, and Sensorial Characterization of Final Products

    Get PDF
    In this study, four different kinds of table olive fermentations belonging to Olea europaea L. Itrana cultivar were evaluated: A, spontaneous fermentation; B, fermentation with a single inoculum (Lactiplantibacillus plantarum B1); C, fermentation with multiple inoculum (L. plantarum B1 + L. plantarum B51 + L. plantarum B124, 1:1:1); and D, fermentation with mixed (bacterium + yeast) inoculum (L. plantarum B1 + Candida boidinii). This research focuses on the correlation between the different mixes of inoculations and their effect under the chemical, sensorial, and textural profiles in the final products (olives) for potential applications on table olive fermentation. During the fermentation, some specific parameters were monitored: chemical characterization of oil fraction (pigments, tocopherols, fatty acids, alkyl esters, and sterol composition), Texture Profile Analysis (TPA), determination of olive color, and sensory evaluation of the final products. The use of LAB starters (single and multiple inocula) compared to spontaneous process revealed a greater performance in preventing the spoilage process and in developing favorable physico-chemical conditions during the fermentation. In fact, the highest values of fatty acid alkyl esters were reached in spontaneous fermentation (~480 mg/kg in jar A). The presence of C. boidinii as inoculum in jar D was involved in table olive softening: the fermented olives showed the lowest values of the parameters related to consistence of fruit as hardness (~2300 g) and gumminess (~990 g) and high value of fatty acid methyl esters (~110 mg/kg)
    • 

    corecore