691 research outputs found
Non-reciprocal light scattering by lattice of magnetic vortices
We report on experimental study of optical properties of two-dimensional
square lattice of triangle Co and CoFe nanoparticles with a vortex
magnetization distribution. We demonstrate that intensity of light scattered in
diffraction maxima depends on the vorticity of the particles magnetization and
it can be manipulated by applying an external magnetic field. The experimental
results can be understood in terms of phenomenological theory.Comment: 10 pages, 4 figure
Swelling-collapse transition of self-attracting walks
We study the structural properties of self-attracting walks in d dimensions
using scaling arguments and Monte Carlo simulations. We find evidence for a
transition analogous to the \Theta transition of polymers. Above a critical
attractive interaction u_c, the walk collapses and the exponents \nu and k,
characterising the scaling with time t of the mean square end-to-end distance
~ t^{2 \nu} and the average number of visited sites ~ t^k, are
universal and given by \nu=1/(d+1) and k=d/(d+1). Below u_c, the walk swells
and the exponents are as with no interaction, i.e. \nu=1/2 for all d, k=1/2 for
d=1 and k=1 for d >= 2. At u_c, the exponents are found to be in a different
universality class.Comment: 6 pages, 5 postscript figure
Far-from-equilibrium Ostwald ripening in electrostatically driven granular powders
We report the first experimental study of cluster size distributions in
electrostatically driven granular submonolayers. The cluster size distribution
in this far-from-equilibrium process exhibits dynamic scaling behavior
characteristic of the (nearly equilibrium) Ostwald ripening, controlled by the
attachment and detachment of the "gas" particles. The scaled size distribution,
however, is different from the classical Wagner distribution obtained in the
limit of a vanishingly small area fraction of the clusters. A much better
agreement is found with the theory of Conti et al. [Phys. Rev. E 65, 046117
(2002)] which accounts for the cluster merger.Comment: 5 pages, to appear in PR
Self-Attracting Walk on Lattices
We have studied a model of self-attracting walk proposed by Sapozhnikov using
Monte Carlo method. The mean square displacement
and the mean number of visited sites are calculated for
one-, two- and three-dimensional lattice. In one dimension, the walk shows
diffusive behaviour with . However, in two and three dimension, we
observed a non-universal behaviour, i.e., the exponent varies
continuously with the strength of the attracting interaction.Comment: 6 pages, latex, 6 postscript figures, Submitted J.Phys.
The influence of defects on magnetic properties of fcc-Pu
The influence of vacancies and interstitial atoms on magnetism in Pu has been
considered in frames of the Density Functional Theory (DFT). The relaxation of
crystal structure arising due to different types of defects was calculated
using the molecular dynamic method with modified embedded atom model (MEAM).
The LDA+U+SO (Local Density Approximation with explicit inclusion of Coulomb
and spin-orbital interactions) method in matrix invariant form was applied to
describe correlation effects in Pu with these types of defects. The
calculations show that both vacancies and interstitials give rise to local
moments in -shell of Pu in good agreement with experimental data for
annealed Pu. Magnetism appears due to destroying of delicate balance between
spin-orbital and exchange interactions.Comment: 13 pages, 4 figure
Cellular Models for River Networks
A cellular model introduced for the evolution of the fluvial landscape is
revisited using extensive numerical and scaling analyses. The basic network
shapes and their recurrence especially in the aggregation structure are then
addressed. The roles of boundary and initial conditions are carefully analyzed
as well as the key effect of quenched disorder embedded in random pinning of
the landscape surface. It is found that the above features strongly affect the
scaling behavior of key morphological quantities. In particular, we conclude
that randomly pinned regions (whose structural disorder bears much physical
meaning mimicking uneven landscape-forming rainfall events, geological
diversity or heterogeneity in surficial properties like vegetation, soil cover
or type) play a key role for the robust emergence of aggregation patterns
bearing much resemblance to real river networks.Comment: 7 pages, revtex style, 14 figure
Unified approach to photo and electro-production of mesons with arbitrary spins
A new approach to identify the independent amplitudes along with their
partial wave multipole expansions, for photo and electro-production is
suggested,which is generally applicable to mesons with arbitrary spin-parity.
These amplitudes facilitate direct identification of different resonance
contributions.Comment: 11 page
Three-dimensional modeling and analysis of the stress-strain state of the teeth, jaw bone and wire - Flex with immobilization of teeth combined tire of their own design
By using three-dimensional modeling and analysis of the stress-strain state of the teeth, jaw bone and wire - flex action has been defined occlusal load on the teeth, immobilized with combined tire of our own design, consisting of a block of crowns in combination with wire flex in periodontitis of moderate severity, complicated by small defects in the anterior group of the dentition of the mandible.При помощи трехмерного моделирования и анализа напряженно-деформированного состояния зубов, челюстной кости и проволоки — флекс определено действие окклюзионной нагрузки на зубы, иммобилизированные комбинированной шиной собственной конструкции, состоящей из блока коронок в комбинации с проволокой флекс при пародонтите средней тяжести, осложненном малыми дефектами в переднем отделе зубного ряда нижней челюсти
A hysteresis model with dipole interaction: one more devil-staircase
Magnetic properties of 2D systems of magnetic nanoobjects (2D regular
lattices of the magnetic nanoparticles or magnetic nanostripes) are considered.
The analytical calculation of the hysteresis curve of the system with
interaction between nanoobjects is provided. It is shown that during the
magnetization reversal system passes through a number of metastable states. The
kinetic problem of the magnetization reversal was solved for three models. The
following results have been obtained. 1) For 1D system (T=0) with the
long-range interaction with the energy proportional to , the
staircase-like shape of the magnetization curve has self-similar character. The
nature of the steps is determined by interplay of the interparticle interaction
and coercivity of the single nanoparticle. 2) The influence of the thermal
fluctuations on the kinetic process was examined in the framework of the
nearest-neighbor interaction model. The thermal fluctuations lead to the
additional splitting of the steps on the magnetization curve. 3) The
magnetization curve for system with interaction and coercivity dispersion was
calculated in mean field approximation. The simple method to experimentally
distinguish the influence of interaction and coercivity dispersion on the
magnetization curve is suggested.Comment: 22 pages, 8 figure
New data on OZI rule violation in bar{p}p annihilation at rest
The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+
pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen
target are presented. It was found that the value of this ratio increases with
the decreasing of the dipion mass, which demonstrates the difference in the phi
and omega production mechanisms. An indication on the momentum transfer
dependence of the apparent OZI rule violation for phi production from the 3S1
initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter
- …