41 research outputs found
Assessing the impact of COVID-19 on liver cancer management (CERO-19)
Background & Aims: The coronavirus disease 2019 (COVID-19) pandemic has posed unprecedented challenges to healthcare
systems and it may have heavily impacted patients with liver cancer (LC). Herein, we evaluated whether the schedule of LC
screening or procedures has been interrupted or delayed because of the COVID-19 pandemic.
Methods: An international survey evaluated the impact of the COVID-19 pandemic on clinical practice and clinical trials from
March 2020 to June 2020, as the first phase of a multicentre, international, and observational project. The focus was on
patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma, cared for around the world during the first
COVID-19 pandemic wave.
Results: Ninety-one centres expressed interest to participate and 76 were included in the analysis, from Europe, South America,
North America, Asia, and Africa (73.7%,17.1%, 5.3%, 2.6%, and 1.3% per continent, respectively). Eighty-seven percent of the centres
modified their clinical practice: 40.8% the diagnostic procedures, 80.9% the screening programme, 50% cancelled curative and/or
palliative treatments for LC, and 41.7% modified the liver transplantation programme. Forty-five out of 69 (65.2%) centres in
which clinical trials were running modified their treatments in that setting, but 58.1% were able to recruit new patients. The
phone call service was modified in 51.4% of centres which had this service before the COVID-19 pandemic (n = 19/37).
Conclusions: The first wave of the COVID-19 pandemic had a tremendous impact on the routine care of patients with liver
cancer. Modifications in screening, diagnostic, and treatment algorithms may have significantly impaired the outcome of
patients. Ongoing data collection and future analyses will report the benefits and disadvantages of the strategies imple mented, aiding future decision-making
FMAP: Distributed Cooperative Multi-Agent Planning
This paper proposes FMAP (Forward Multi-Agent Planning), a fully-distributed multi-agent planning method that integrates planning and coordination. Although FMAP is specifically aimed at solving problems that require cooperation among agents, the flexibility of the domain-independent planning model allows FMAP to tackle multi-agent planning tasks of any type. In FMAP, agents jointly explore the plan space by building up refinement plans through a complete and flexible forward-chaining partial-order planner. The search is guided by h D T G , a novel heuristic function that is based on the concepts of Domain Transition Graph and frontier state and is optimized to evaluate plans in distributed environments. Agents in FMAP apply an advanced privacy model that allows them to adequately keep private information while communicating only the data of the refinement plans that is relevant to each of the participating agents. Experimental results show that FMAP is a general-purpose approach that efficiently solves tightly-coupled domains that have specialized agents and cooperative goals as well as loosely-coupled problems. Specifically, the empirical evaluation shows that FMAP outperforms current MAP systems at solving complex planning tasks that are adapted from the International Planning Competition benchmarks.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, the Valencian Prometeo project II/2013/019, and the FPI-UPV scholarship granted to the first author by the Universitat Politecnica de Valencia.Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). FMAP: Distributed Cooperative Multi-Agent Planning. Applied Intelligence. 41(2):606-626. https://doi.org/10.1007/s10489-014-0540-2S606626412Benton J, Coles A, Coles A (2012) Temporal planning with preferences and time-dependent continuous costs. In: Proceedings of the 22nd international conference on automated planning and scheduling (ICAPS). AAAI, pp 2–10Borrajo D. (2013) Multi-agent planning by plan reuse. In: Proceedings of the 12th international conference on autonomous agents and multi-agent systems (AAMAS). IFAAMAS, pp 1141–1142Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). AAAI, pp 28–35Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiagent Syst 19(3):297–331Bresina J, Dearden R, Meuleau N, Ramakrishnan S, Smith D, Washington R (2002) Planning under continuous time and resource uncertainty: a challenge for AI. In: Proceedings of the 18th conference on uncertainty in artificial intelligence (UAI). Morgan Kaufmann, pp 77–84Cox J, Durfee E (2009) Efficient and distributable methods for solving the multiagent plan coordination problem. Multiagent Grid Syst 5(4):373–408Crosby M, Rovatsos M, Petrick R (2013) Automated agent decomposition for classical planning. In: Proceedings of the 23rd international conference on automated planning and scheduling (ICAPS). AAAI, pp 46–54Dimopoulos Y, Hashmi MA, Moraitis P (2012) μ-satplan: Multi-agent planning as satisfiability. Knowl-Based Syst 29:54–62Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208Gerevini A, Haslum P, Long D, Saetti A, Dimopoulos Y (2009) Deterministic planning in the fifth international planning competition: PDDL3 and experimental evaluation of the planners. Artif Intell 173(5-6):619–668Ghallab M, Nau D, Traverso P (2004) Automated planning. Theory and practice. Morgan KaufmannGünay A, Yolum P (2013) Constraint satisfaction as a tool for modeling and checking feasibility of multiagent commitments. Appl Intell 39(3):489–509Helmert M (2004) A planning heuristic based on causal graph analysis. In: Proceedings of the 14th international conference on automated planning and scheduling ICAPS. AAAI, pp 161–170Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302Jannach D, Zanker M (2013) Modeling and solving distributed configuration problems: a CSP-based approach. IEEE Trans Knowl Data Eng 25(3):603–618Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121Kala R, Warwick K (2014) Dynamic distributed lanes: motion planning for multiple autonomous vehicles. Appl Intell:1–22Koehler J, Ottiger D (2002) An AI-based approach to destination control in elevators. AI Mag 23(3):59–78Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical reportvan der Krogt R (2009) Quantifying privacy in multiagent planning. Multiagent Grid Syst 5(4):451–469Kvarnström J (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi-Agent Syst 9(1–2):87–143Long D, Fox M (2003) The 3rd international planning competition: results and analysis. J Artif Intell Res 20:1–59Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 1323–1330O’Brien P, Nicol R (1998) FIPA - towards a standard for software agents. BT Tech J 16(3):51–59Öztürk P, Rossland K, Gundersen O (2010) A multiagent framework for coordinated parallel problem solving. Appl Intell 33(2):132–143Pal A, Tiwari R, Shukla A (2013) Communication constraints multi-agent territory exploration task. Appl Intell 38(3):357–383Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177de la Rosa T, García-Olaya A, Borrajo D (2013) A case-based approach to heuristic planning. Appl Intell 39(1):184–201Sapena O, Onaindia E (2008) Planning in highly dynamic environments: an anytime approach for planning under time constraints. Appl Intell 29(1):90–109Sapena O, Onaindia E, Garrido A, Arangú M (2008) A distributed CSP approach for collaborative planning systems. Eng Appl Artif Intell 21(5):698–709Serrano E, Such J, Botía J, García-Fornes A (2013) Strategies for avoiding preference profiling in agent-based e-commerce environments. Appl Intell:1–16Smith D, Frank J, Jónsson A (2000) Bridging the gap between planning and scheduling. Knowl Eng Rev 15(1):47–83Such J, García-Fornes A, Espinosa A, Bellver J (2012) Magentix2: a privacy-enhancing agent platform. Eng Appl Artif Intell:96–109Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145Torreño A, Onaindia E, Sapena O (2012) An approach to multi-agent planning with incomplete information. In: Proceedings of the 20th European conference on artificial intelligence (ECAI), vol 242. IOS Press, pp 762–767Torreño A, Onaindia E, Sapena O (2014) A flexible coupling approach to multi-agent planning under incomplete information. Knowl Inf Syst 38(1):141–178Van Der Krogt R, De Weerdt M (2005) Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). AAAI, pp 161–170de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiagent Grid Syst 5(4):345– 355Yokoo M, Durfee E, Ishida T, Kuwabara K (1998) The distributed constraint satisfaction problem: formalization and algorithms. IEEE Trans Knowl Data Eng 10(5):673–685Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th international joint conference conference on autonomous agents and multiagent systems (AAMAS). IFAAMAS, pp 798–80
High Sensitivity C Reactive Protein in Patients with Rheumatoid Arthritis Treated with Antibodies against IL-6 or Jak Inhibitors: A Clinical and Ultrasonographic Study
Background: We examined whether high-sensitivity CRP (hsCRP) reflected the inflammatory disease status evaluated by clinical and ultrasound (US) parameters in RA patients receiving IL-6 receptor antibodies (anti-IL-6R) or JAK inhibitors (JAKi). Methods: We conducted a cross-sectional study of patients with established RA receiving anti-IL-6R (tocilizumab, sarilumab) or JAKi (tofacitinib, baricitinib). Serum hsCRP and US synovitis in both hands were measured. Associations between hsCRP and clinical inflammatory activity were evaluated using composite activity indices. The association between hsCRP and US synovitis was analyzed. Results: 63 (92% female) patients (42 anti- IL-6R and 21 JAKi) were included, and the median disease duration was 14.4 (0.2–37.5) years. Most patients were in remission or had low levels of disease. Overall hsCRP values were very low, and significantly lower in anti-IL-6R patients (median 0.04 mg/dL vs. 0.16 mg/dL). Anti-IL-6R (82.4%) patients and 48% of JAKi patients had very low hsCRP levels (≤0.1 mg/dL) (p = 0.002). In the anti-IL-6R group, hsCRP did not correlate with the composite activity index or US synovitis. In the JAKi group, hsCRP moderately correlated with US parameters (r = 0.5) but not clinical disease activity, and hsCRP levels were higher in patients with US synovitis (0.02 vs. 0.42 mg/dL) (p = 0.001). Conclusion: In anti-IL-6R RA-treated patients, hsCRP does not reflect the inflammatory disease state, but in those treated with JAKi, hsCRP was associated with US synovitis
Imaging Findings in Patients with Immune Checkpoint Inhibitor-Induced Arthritis
Immune checkpoint inhibitor (ICI)-induced arthritis is an increasingly recognized adverse event in patients with oncologic disease during immunotherapy. Four patterns are well described, including rheumatoid arthritis (RA)-like, polymyalgia rheumatica (PMR)-like, psoriatic arthritis (PsA)-like, and oligo-monoarthritis, among others. Despite better clinical recognition of these syndromes, information about the main imaging findings is limited. Methods: We conducted a retrospective observational study including all adult patients referred to the Rheumatology Department of a single-center due to ICI-induced arthritis who underwent imaging studies [ultrasound (US), magnetic resonance imaging (MRI), and (18)F-FDG PET/CT)] between January 2017 and January 2022. Results: Nineteen patients with ICI-induced arthritis with at least one diagnostic imaging assessment were identified (15 US, 4 MRI, 2 (18)F-FDG PET/CT). Most patients were male (84.2%), with a median age at inclusion of 73 years. The main underlying diagnoses for ICI treatment were melanoma in five cases. The distribution of ICI-induced arthritis was as follows: PMR-like (5, 26.2%), RA-like (4, 21.1%), PsA-like (4, 21.1%), and others (6, 31.6%). All RA-like patients had US findings indistinguishable from conventional RA patients. In addition, 3/5 (60%) of PMR-like patients had significant involvement of the hands and wrists. Abnormal findings on MRI or PET-CT were reported by clinical symptoms. No erosions or myofascitis were seen. Conclusions: ICI-induced arthritis patients present inflammatory patterns on imaging studies similar to conventional inflammatory arthropathies, and therefore these syndromes should be followed carefully and treated according to these findings
El poder de la colaboración
[ES] La implantación del EEES ha dado lugar a que, además de las competencias específicas de cada materia o asignatura de los estudios de Grado, el alumnado adquiera otra serie de competencias de carácter transversal o genérico, como es la del trabajo en equipo. A la hora de abordar y de concretar el objetivo de la competencia del trabajo en grupo, existen diversas metodologías. En algunas de ellas, tras formarse los grupos, se plantean trabajos de forma que cada grupo resuelve un problema. En contraposición a este planteamiento, la propuesta metodológica que presentamos va en la línea de trabajar con grupos autónomos y colaborativos, potenciando la interacción colaborativa y cooperativa entre grupos distintos para la consecución de unas metas que serán comunes o estarán íntimamente relacionadas para los distintos grupos.
En este artículo se exponen 4 de los trabajos planteados en las prácticas de la asignatura de Matemáticas 2 del primer curso del Grado de Ingeniería de Sistemas de Telecomunicación, Sonido e Imagen (GISTSI), desarrollados en base al trabajo en grupos autónomos y colaborativos. Algunos de los trabajos se han diseñado desde planteamientos multidisciplinares con la colaboración previa de profesores de distintas disciplinas. Se muestran también los productos obtenidos por el alumnado gracias al poder añadido que proporciona la colaboración.[Otros] The implementation of the EHEA has meant that students must acquire
another set of cross-generic competences, as is the teamwork, in addition to
the specific competences corresponding to each subject or course of the
grade studies.When addressing and achieving the objective of the teamwork
competence, there are several methodologies. In some of them, after forming
the work teams, work is posed so that each group solves a problem. In
contrast to the previous approach, the methodology presented is in line to
work with independent and collaborative groups, promoting collaborative
and cooperative interaction between different groups to achieve common
goals, or goals closely related for the different groups.
This article presents 4 of the works proposed in the subject Mathematics 2
GISTSI first course, developed based on working in autonomous and
collaborative groups. Some of the works have been designed from
multidisciplinary approaches, with the previous collaboration of teachers
from different disciplines. Products obtained by students through the added
power provided by collaboration, are also shown.Vidal Meló, A.; Roig, B.; Estruch, VD.; Boigues Planes, FJ.; Rey Tormos, RMD.; Alba, J.; Sapena Piera, A. (2014). El poder de la colaboración. Editorial Universitat Politècnica de València. 689-703. http://hdl.handle.net/10251/168753S68970
A flexible coupling approach to multi-agent planning under incomplete information
The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-012-0569-7Multi-agent planning (MAP) approaches are typically oriented at solving loosely
coupled problems, being ineffective to deal with more complex, strongly related problems.
In most cases, agents work under complete information, building complete knowledge
bases. The present article introduces a general-purpose MAP framework designed to tackle
problems of any coupling levels under incomplete information. Agents in our MAP model
are partially unaware of the information managed by the rest of agents and share only the critical
information that affects other agents, thus maintaining a distributed vision of the task.
Agents solve MAP tasks through the adoption of an iterative refinement planning procedure
that uses single-agent planning technology. In particular, agents will devise refinements
through the partial-order planning paradigm, a flexible framework to build refinement plans
leaving unsolved details that will be gradually completed by means of new refinements. Our
proposal is supported with the implementation of a fully operative MAP system and we show
various experiments when running our system over different types of MAP problems, from
the most strongly related to the most loosely coupled.This work has been partly supported by the Spanish MICINN under projects Consolider Ingenio 2010 CSD2007-00022 and TIN2011-27652-C03-01, and the Valencian Prometeo project 2008/051.Torreño Lerma, A.; Onaindia De La Rivaherrera, E.; Sapena Vercher, O. (2014). A flexible coupling approach to multi-agent planning under incomplete information. Knowledge and Information Systems. 38:141-178. https://doi.org/10.1007/s10115-012-0569-7S14117838Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the THOMAS approach. Knowl Inf Syst 29(2):379–403Barrett A, Weld DS (1994) Partial-order planning: evaluating possible efficiency gains. Artif Intell 67(1):71–112Belesiotis A, Rovatsos M, Rahwan I (2010) Agreeing on plans through iterated disputes. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems. pp 765–772Bellifemine F, Poggi A, Rimassa G (2001) JADE: a FIPA2000 compliant agent development environment. In: Proceedings of the 5th international conference on autonomous agents (AAMAS). ACM, pp 216–217Blum A, Furst ML (1997) Fast planning through planning graph analysis. Artif Intell 90(1–2):281–300Boutilier C, Brafman R (2001) Partial-order planning with concurrent interacting actions. J Artif Intell Res 14(105):136Brafman R, Domshlak C (2008) From one to many: planning for loosely coupled multi-agent systems. In: Proceedings of the 18th international conference on automated planning and scheduling (ICAPS). pp 28–35Brenner M, Nebel B (2009) Continual planning and acting in dynamic multiagent environments. J Auton Agents Multiag Syst 19(3):297–331Coles A, Coles A, Fox M, Long D (2010) Forward-chaining partial-order planning. In: Proceedings of the 20th international conference on automated planning and scheduling (ICAPS). pp 42–49Coles A, Fox M, Long D, Smith A (2008) Teaching forward-chaining planning with JavaFF. In: Colloquium on AI education, 23rd AAAI conference on artificial intelligenceCox J, Durfee E, Bartold T (2005) A distributed framework for solving the multiagent plan coordination problem. In: Proceedings of the 4th international joint conference on autonomous agents and multiagent systems (AAMAS). ACM, pp 821–827de Weerdt M, Clement B (2009) Introduction to planning in multiagent systems. Multiag Grid Syst 5(4):345–355Decker K, Lesser VR (1992) Generalizing the partial global planning algorithm. Int J Coop Inf Syst 2(2):319–346desJardins M, Durfee E, Ortiz C, Wolverton M (1999) A survey of research in distributed continual planning. AI Mag 20(4):13–22Doshi P (2007) On the role of interactive epistemology in multiagent planning. In: Artificial intelligence and, pattern recognition. pp 208–213Dréo J, Savéant P, Schoenauer M, Vidal V (2011) Divide-and-evolve: the marriage of descartes and darwin. In: Proceedings of the 7th international planning competition (IPC). Freiburg, GermanyDurfee EH (2001) Distributed problem solving and planning. In: Multi-agents systems and applications: selected tutorial papers from the 9th ECCAI advanced course (ACAI) and agentLink’s third European agent systems summer school (EASSS), vol LNAI 2086. Springer, pp 118–149Durfee EH, Lesser V (1991) Partial global planning: a coordination framework for distributed hypothesis formation. IEEE Trans Syst Man Cybern Special Issue Distrib Sens Netw 21(5):1167–1183Ephrati E, Rosenschein JS (1996) Deriving consensus in multiagent systems. Artif Intell 87(1–2):21–74Fikes R, Nilsson N (1971) STRIPS: a new approach to the application of theorem proving to problem solving. Artif Intell 2(3):189–208Fogués R, Alberola J, Such J, Espinosa A, Garcia-Fornes A (2010) Towards dynamic agent interaction support in open multiagent systems. In: Proceedings of the 2010 conference on artificial intelligence research and development: proceedings of the 13th international conference of the Catalan association for artificial intelligence’. IOS Press, pp 89–98Gerevini A, Long D (2006) Preferences and soft constraints in PDDL3. In: ICAPS workshop on planning with preferences and soft constraints, vol 6. Citeseer, pp 46–53Ghallab M, Howe A, Knoblock C, McDermott D, Ram A, Veloso M, Weld D, Wilkins D (1998) PDDL-the Planning Domain Definition Language. In: AIPS-98 planning committeeGmytrasiewicz P, Doshi P (2005) A framework for sequential planning in multi-agent settings. J Artif Intell Res 24:49–79Haslum P, Jonsson P (1999) Some results on the complexity of planning with incomplete information. In: Proceedings of the 5th European conference on, planning (ECP). pp 308–318Helmert M (2006) The fast downward planning system. J Artif Intell Res 26(1):191–246Hoffmann J, Nebel B (2001) The FF planning system: fast planning generation through heuristic search. J Artif Intell Res 14:253–302Jonsson A, Rovatsos M (2011) Scaling up multiagent planning: a best-response approach. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 114–121Kambhampati S (1997) Refinement planning as a unifying framework for plan synthesis. AI Mag 18(2):67–97Kaminka GA, Pynadath DV, Tambe M (2002) Monitoring teams by overhearing: a multi-agent plan-recognition approach. J Artif Intell Res 17:83–135Kone M, Shimazu A, Nakajima T (2000) The state of the art in agent communication languages. Knowl Inf Syst 2(3):259–284Kovacs DL (2011) Complete BNF description of PDDL3.1. Technical reportKraus S (1997) Beliefs, time and incomplete information in multiple encounter negotiations among autonomous agents. Ann Math Artif Intell 20(1–4):111–159Kumar A, Zilberstein S, Toussaint M (2011) Scalable multiagent planning using probabilistic inference. In: Proceedings of the 22nd international joint conference on artificial intelligence (IJCAI)’. Barcelona, Spain, pp 2140–2146Kvarnström J. (2011) Planning for loosely coupled agents using partial order forward-chaining. In: Proceedings of the 21st international conference on automated planning and scheduling (ICAPS). AAAI, pp 138–145Lesser V, Decker K, Wagner T, Carver N, Garvey A, Horling B, Neiman D, Podorozhny R, Prasad M, Raja A et al (2004) Evolution of the GPGP/TAEMS domain-independent coordination framework. Auton Agents Multi Agent Syst 9(1):87–143Lipovetzky N, Geffner H (2011) Searching for plans with carefully designed probes. In: Proceedings of the 21th international conference on automated planning and scheduling (ICAPS)Micacchi C, Cohen R (2008) A framework for simulating real-time multi-agent systems. Knowl Inf Syst 17(2):135–166Nguyen N, Katarzyniak R (2009) Actions and social interactions in multi-agent systems. Knowl Inf Syst 18(2):133–136Nguyen X, Kambhampati S (2001) Reviving partial order planning. In: Proceedings of the 17th international joint conference on artificial intelligence (IJCAI). Morgan Kaufmann, pp 459–464Nissim R, Brafman R, Domshlak C (2010) A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th international conference on autonomous agents and multiagent systems (AAMAS). pp 1323–1330Pajares S, Onaindia E (2012) Defeasible argumentation for multi-agent planning in ambient intelligence applications. In: Proceedings of the 11th international conference on autonomous agents and multiagent systems (AAMAS) pp 509–516Paolucci M, Shehory O, Sycara K, Kalp D, Pannu A (2000) A planning component for RETSINA agents. Intelligent Agents VI. Agent Theories Architectures, and Languages pp 147–161Parsons S, Sierra C, Jennings N (1998) Agents that reason and negotiate by arguing. J Logic Comput 8(3):261Penberthy J, Weld D (1992) UCPOP: a sound, complete, partial order planner for ADL. In: Proceedings of the 3rd international conference on principles of knowledge representation and reasoning (KR). Morgan Kaufmann, pp 103–114Richter S, Westphal M (2010) The LAMA planner: guiding cost-based anytime planning with landmarks. J Artif Intell Res 39(1):127–177Sycara K, Pannu A (1998) The RETSINA multiagent system (video session): towards integrating planning, execution and information gathering. In: Proceedings of the 2nd international conference on autonomous agents (Agents). ACM, pp 350–351Tambe M (1997) Towards flexible teamwork. J Artif Intell Res 7:83–124Tang Y, Norman T, Parsons S (2010) A model for integrating dialogue and the execution of joint plans. Argumentation in multi-agent systems, pp 60–78Tonino H, Bos A, de Weerdt M, Witteveen C (2002) Plan coordination by revision in collective agent based systems. Artif Intell 142(2):121–145Van Der Krogt R, De Weerdt M (2005), Plan repair as an extension of planning. In: Proceedings of the 15th international conference on automated planning and scheduling (ICAPS). pp 161–170Weld D (1994) An introduction to least commitment planning. AI Mag 15(4):27Weld D (1999) Recent advances in AI planning. AI Mag 20(2):93–123Wilkins D, Myers K (1998) A multiagent planning architecture. In: Proceedings of the 4th international conference on artificial intelligence planning systems (AIPS), pp 154–162Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded communication. Artif Intell 175(2):487–511Younes H, Simmons R (2003) VHPOP: versatile heuristic partial order planner. J Artif Intell Res 20: 405–430Zhang J, Nguyen X, Kowalczyk R (2007) Graph-based multi-agent replanning algorithm. In: Proceedings of the 6th conference on autonomous agents and multiagent systems (AAMAS
Mathematical properties of weighted impact factors based on measures of prestige of the citing journals
The final publication is available at Springer via http://dx.doi.org/10.1007/s11192-015-1741-0An abstract construction for general weighted impact factors is introduced. We
show that the classical weighted impact factors are particular cases of our model, but it can
also be used for defining new impact measuring tools for other sources of information as
repositories of datasets providing the mathematical support for a new family of altmet-
rics. Our aim is to show the main mathematical properties of this class of impact measuring
tools, that hold as consequences of their mathematical structure and does not depend on the
definition of any given index nowadays in use. In order to show the power of our approach
in a well-known setting, we apply our construction to analyze the stability of the ordering
induced in a list of journals by the 2-year impact factor (IF2). We study the change of this
ordering when the criterium to define it is given by the numerical value of a new weighted
impact factor, in which IF2 is used for defining the weights. We prove that, if we assume
that the weight associated to a citing journal increases with its IF2, then the ordering given
in the list by the new weighted impact factor coincides with the order defined by the IF2. We give a quantitative bound for the errors committed. We also show two examples of
weighted impact factors defined by weights associated to the prestige of the citing journal
for the fields of MATHEMATICS and MEDICINE, GENERAL AND INTERNAL,
checking if they satisfy the increasing behavior mentioned above.Ferrer Sapena, A.; Sánchez Pérez, EA.; González, LM.; Peset Mancebo, MF.; Aleixandre Benavent, R. (2015). Mathematical properties of weighted impact factors based on measures of prestige of the citing journals. Scientometrics. 105(3):2089-2108. https://doi.org/10.1007/s11192-015-1741-0S208921081053Ahlgren, P., & Waltman, L. (2014). The correlation between citation-based and expert-based assessments of publication channels: SNIP and SJR vs. Norwegian quality assessments. Journal of Informetrics, 8, 985–996.Aleixandre Benavent, R., Valderrama Zurián, J. C., & González Alcaide, G. (2007). Scientific journals impact factor: Limitations and alternative indicators. El Profesional de la Información, 16(1), 4–11.Altmann, K. G., & Gorman, G. E. (1998). The usefulness of impact factor in serial selection: A rank and mean analysis using ecology journals. Library Acquisitions-Practise and Theory, 22, 147–159.Arnold, D. N., & Fowler, K. K. (2011). Nefarious numbers. Notices of the American Mathematical Society, 58(3), 434–437.Beliakov, G., & James, S. (2012). Using linear programming for weights identification of generalized bonferroni means in R. In: Proceedings of MDAI 2012 modeling decisions for artificial intelligence. Lecture Notes in Computer Science, Vol. 7647, pp. 35–44.Beliakov, G., & James, S. (2011). Citation-based journal ranks: The use of fuzzy measures. Fuzzy Sets and Systems, 167, 101–119.Buela-Casal, G. (2003). Evaluating quality of articles and scientific journals. Proposal of weighted impact factor and a quality index. Psicothema, 15(1), 23–25.Dorta-Gonzalez, P., & Dorta-Gonzalez, M. I. (2013). Comparing journals from different fields of science and social science through a JCR subject categories normalized impact factor. Scientometrics, 95(2), 645–672.Dorta-Gonzalez, P., Dorta-Gonzalez, M. I., Santos-Penate, D. R., & Suarez-Vega, R. (2014). Journal topic citation potential and between-field comparisons: The topic normalized impact factor. Journal of Informetrics, 8(2), 406–418.Egghe, L., & Rousseau, R. (2002). A general frame-work for relative impact indicators. Canadian Journal of Information and Library Science, 27(1), 29–48.Gagolewski, M., & Mesiar, R. (2014). Monotone measures and universal integrals in a uniform framework for the scientific impact assessment problem. Information Sciences, 263, 166–174.Garfield, E. (2006). The history and meaning of the journal impact factor. JAMA, 295(1), 90–93.Habibzadeh, F., & Yadollahie, M. (2008). Journal weighted impact factor: A proposal. Journal of Informetrics, 2(2), 164–172.Klement, E., Mesiar, R., & Pap, E. (2010). A universal integral as common frame for Choquet and Sugeno integral. IEEE Transaction on Fuzzy System, 18, 178–187.Leydesdorff, L., & Opthof, T. (2010). Scopus’s source normalized impact per paper (SNIP) versus a journal impact factor based on fractional counting of citations. Journal of the American Society for Information Science and Technology, 61, 2365–2369.Li, Y. R., Radicchi, F., Castellano, C., & Ruiz-Castillo, J. (2013). Quantitative evaluation of alternative field normalization procedures. Journal of Informetrics, 7(3), 746–755.Moed, H. F. (2010). Measuring contextual citation impact of scientific journals. Journal of Informetrics, 4, 265–277.NISO. (2014). Alternative metrics initiative phase 1. White paper. http://www.niso.org/apps/group-public/download.php/13809/Altmetrics-project-phase1-white-paperOwlia, P., Vasei, M., Goliaei, B., & Nassiri, I. (2011). Normalized impact factor (NIF): An adjusted method for calculating the citation rate of biomedical journals. Journal of Biomedical Informatics, 44(2), 216–220.Pinski, G., & Narin, F. (1976). Citation influence for journal aggregates of scientific publications: Theory, with application to the literature of physics. Information Processing and Management, 12, 297–312.Pinto, A. C., & Andrade, J. B. (1999). Impact factor of scientific journals: What is the meaning of this parameter? Quimica Nova, 22, 448–453.Raghunathan, M. S., & Srinivas, V. (2001). Significance of impact factor with regard to mathematics journals. Current Science, 80(5), 605.Ruiz Castillo, J., & Waltman, L. (2015). Field-normalized citation impact indicators using algorithmically constructed classification systems of science. Journal of Informetrics, 9, 102–117.Saha, S., Saint, S., & Christakis, D. A. (2003). Impact factor: A valid measure of journal quality? Journal of the Medical Library Association, 91, 42–46.Torra, V., & Narukawa, Y. (2008). The h-index and the number of citations: Two fuzzy integrals. IEEE Transaction on Fuzzy System, 16, 795–797.Torres-Salinas, D., & Jimenez-Contreras, E. (2010). Introduction and comparative study of the new scientific journals citation indicators in journal citation reports and scopus. El Profesional de la Información, 19, 201–207.Waltman, L., & van Eck, N. J. (2008). Some comments on the journal weighted impact factor proposed by Habibzadeh and Yadollahie. Journal of Informetrics, 2(4), 369–372.Waltman, L., van Eck, N. J., van Leeuwen, T. N., & Visser, M. S. (2013). Some modifications to the SNIP journal impact indicator. Journal of Informetrics, 7, 272–285.Zitt, M. (2011). Behind citing-side normalization of citations: some properties of the journal impact factor. Scientometrics, 89, 329–344.Zitt, M., & Small, H. (2008). Modifying the journal impact factor by fractional citation weighting: The audience factor. Journal of the American Society for Information Science and Technology, 59, 1856–1860.Zyczkowski, K. (2010). Citation graph, weighted impact factors and performance indices. Scientometrics, 85(1), 301–315
Recommended from our members
The European Solar Telescope
The European Solar Telescope (EST) is a project aimed at studying the magnetic connectivity of the solar atmosphere, from the deep photosphere to the upper chromosphere. Its design combines the knowledge and expertise gathered by the European solar physics community during the construction and operation of state-of-the-art solar telescopes operating in visible and near-infrared wavelengths: the Swedish 1m Solar Telescope, the German Vacuum Tower Telescope and GREGOR, the French Télescope Héliographique pour l'Étude du Magnétisme et des Instabilités Solaires, and the Dutch Open Telescope. With its 4.2 m primary mirror and an open configuration, EST will become the most powerful European ground-based facility to study the Sun in the coming decades in the visible and near-infrared bands. EST uses the most innovative technological advances: the first adaptive secondary mirror ever used in a solar telescope, a complex multi-conjugate adaptive optics with deformable mirrors that form part of the optical design in a natural way, a polarimetrically compensated telescope design that eliminates the complex temporal variation and wavelength dependence of the telescope Mueller matrix, and an instrument suite containing several (etalon-based) tunable imaging spectropolarimeters and several integral field unit spectropolarimeters. This publication summarises some fundamental science questions that can be addressed with the telescope, together with a complete description of its major subsystems