58 research outputs found

    MEF/ELF4 transactivation by E2F1 is inhibited by p53

    Get PDF
    Myeloid elf-1-like factor (MEF) or Elf4 is an E-twenty-six (ETS)-related transcription factor with strong transcriptional activity that influences cellular senescence by affecting tumor suppressor p53. MEF downregulates p53 expression and inhibits p53-mediated cellular senescence by transcriptionally activating MDM2. However, whether p53 reciprocally opposes MEF remains unex-plored. Here, we show that MEF is modulated by p53 in human cells and mice tissues. MEF expression and promoter activity were suppressed by p53. While we found that MEF promoter does not contain p53 response elements, intriguingly, it contains E2F consensus sites. Subsequently, we determined that E2F1 specifically binds to MEF promoter and transactivates MEF. Nevertheless, E2F1 DNA binding and transactivation of MEF promoter was inhibited by p53 through the association between p53 and E2F1. Furthermore, we showed that activation of p53 in doxorubicin-induced senescent cells increased E2F1 and p53 interaction, diminished E2F1 recruitment to MEF promoter and reduced MEF expression. These observations suggest that p53 downregulates MEF by associating with and inhibiting the binding activity of E2F1, a novel transcriptional activator of MEF. Together with previous findings, our present results indicate that a negative regulatory mechanism exists between p53 and MEF

    Bone morphogenetic protein 4 differently promotes distinct VE-cadherin+ precursor stages during the definitive hematopoietic development from embryonic stem cell-derived mesodermal cells

    Get PDF
    Definitive hematopoietic cells develop from the fetal liver kinase 1 (Flk1)+ mesodermal cells during the in vitro differentiation of mouse embryonic stem cells (ESCs). VE-cadherin+CD41-CD45- (V+41-45-) hemogenic endothelial cells (HECs) and VE-cadherin+CD41+CD45- (V+41+45-) cells mediate the definitive hematopoietic development from Flk1+ cells. Bone morphogenetic protein 4 (BMP4) is known to be essential for the formation of mesoderm. However, the role of BMP4 in the differentiation of the VE-cadherin+ definitive hematopoietic precursors from the mesoderm has been elusive. We addressed this issue using a co-aggregation culture of ESC-derived Flk1+ cells with OP9 stromal cells. This culture method induced V+41-45- cells, V+41+45- cells, and CD45+ cells from Flk1+ cells. V+41+45- cells possessed the potentials of erythromyeloid and T-lymphoid differentiation. When Flk1+ cells were cultured in the presence of a high concentration of BMP4, the generation of V+41-45- cells was enhanced. The increase of V+41-45- cells led to the subsequent increase of V+41+45- cells and CD45+ cells. The addition of BMP4 also increased hematopoietic colony-forming cells of various lineages. Furthermore, BMP4 promoted the expansion of V+41+45- cells independently of the preceding V+41-45- cell stage. These results suggest that BMP4 has promotive effects on the differentiation of V+41-45- HECs from Flk1+ mesodermal cells and the subsequent proliferation of V+41+45- hematopoietic precursors. These findings may provide insights for establishing a culture system to induce definitive hematopoietic stem cells from ESCs

    The canonical smooth muscle cell marker TAGLN is present in endothelial cells and is involved in angiogenesis

    Get PDF
    Elongation of vascular endothelial cells (ECs) is an important process in angiogenesis; however, the molecular mechanisms remain unknown. The actin-crosslinking protein TAGLN (transgelin, also known as SM22 or SM22α) is abundantly expressed in smooth muscle cells (SMCs) and is widely used as a canonical marker for this cell type. In the course of studies using mouse embryonic stem cells (ESCs) carrying an Tagln promoter-driven fluorescence marker, we noticed activation of the Tagln promoter during EC elongation. Tagln promoter activation co-occurred with EC elongation in response to vascular endothelial growth factor A (VEGF-A). Inhibition of phosphoinositide 3-kinase (PI3K)–Akt signaling and mTORC1 also induced EC elongation and Tagln promoter activation. Human umbilical vein endothelial cells (HUVECs) elongated, activated the TAGLN promoter and increased TAGLN transcripts in an angiogenesis model. Genetic disruption of TAGLN augmented angiogenic behaviors of HUVECs, as did the disruption of TAGLN2 and TAGLN3 genes. Tagln expression was found in ECs in mouse embryos. Our results identify TAGLN as a putative regulator of angiogenesis whose expression is activated in elongating ECs. This finding provides insight into the cytoskeletal regulation of EC elongation and an improved understanding of the molecular mechanisms underlying the regulation of angiogenesis

    In situ precipitation of amorphous calcium phosphate nanoparticles within 3D porous collagen sponges for bone tissue engineering

    Get PDF
    Amorphous calcium phosphate (ACP) plays an important role in biomineralization within the three-dimensional (3D) collagen network in human hard tissues, and exhibits osteoconductivity. Porous collagen sponges coated with ACP nanoparticles could be considered as potential scaffolds for use in bone tissue engineering. In this study, such composite materials were fabricated via homogeneous ACP precipitation using a supersaturated calcium phosphate (CaP) solution. Homogeneous ACP precipitation was induced in situ within the sponges by a temperature-controlled coating process composed of two steps. In the first step, the CaP solution was cooled to 4 °C to suppress precipitation until the solution penetrated fully into the sponge's internal pores. In the second step, the CaP solution was warmed up to 25 °C with continuous shaking to induce ACP precipitation within the sponges. The resulting sponges were therefore coated with ACP nanoparticles on their inner and outer surfaces. A simulated body fluid (SBF) test indicated osteoconductivity of the collagen sponges coated with ACP nanoparticles. Further, ACP-coated collagen sponges immobilizing basic fibroblast growth factor (bFGF) were fabricated using the CaP solution supplemented with bFGF. The fabricated sponges allowed the sustained release of bFGF in a culture medium and enhanced proliferation of osteoblastic MC3T3-E1 cells. Such ACP-coated collagen sponges have the potential to be used as scaffolds in bone tissue engineering if pursued for further in vitro and in vivo studies

    Fluoridated Apatite Coating on Human Dentin via Laser-Assisted Pseudo-Biomineralization with the Aid of a Light-Absorbing Molecule

    Get PDF
    A simple, area-specific coating technique for fluoridated apatite (FAp) on teeth would be useful in dental applications. Recently, we achieved area-specific FAp coating on a human dentin substrate within 30 min by a laser-assisted biomimetic (LAB) process; pulsed Nd:YAG laser irradiation in a fluoride-containing supersaturated calcium phosphate solution (FCP solution). The LAB-processed, FAp-coated dentin substrate exhibited antibacterial activity against a major oral bacterium, Streptococcus mutans. In the present study, we refined the LAB process with a combination of a dental diode laser and a clinically approved light-absorbing molecule, indocyanine green (ICG). A micron-thick FAp layer was successfully formed on the dentin surface within only 3 min by the refined LAB process, i.e., dental diode laser irradiation in the FCP solution following ICG treatment. The ICG layer precoated on the dentin substrate played a crucial role in inducing rapid pseudo-biomineralization (FAp layer formation) on the dentin surface by absorbing laser light at the solid-liquid interface. In the refined LAB process, the precoated ICG layer was eliminated and replaced with the newly formed FAp layer composed of vertically oriented pillar-like nanocrystals. Cross-sectional ultrastructural analysis revealed a smooth interface between the FAp layer and the dentin substrate. The refined LAB process has potential as a tool for the tooth surface functionalization and hence, is worth further process refinement and in vitro and in vivo studies

    Calcium phosphate coating on dental composite resins by a laser-assisted biomimetic process

    Get PDF
    Objectives: Dental composite resins with better biocompatibility and osteoconductivity have been sought in endodontic treatments. This study aimed to develop a technique to produce the osteoconductive resin surfaces through calcium phosphate (CaP) coating using a laser-assisted biomimetic (LAB) process. Methods: Light-cured, acrylic-based composite resins were used as substrates. The resin substrate was subjected to a LAB process comprising Nd:YAG pulsed laser irradiation in a supersaturated CaP solution. The LAB-processed substrate was immersed for 3 days in a simulated body fluid (SBF) for the preliminary osteoconductivity assessment. Results: After irradiation for 30 min, the resin surfaces were partly coated with a newly formed CaP layer. The coating layer contained hydroxyapatite as the main crystalline phase and the coating coverage depended on the laser wavelength and the type of resin. The LAB-processed CaP-coated surface exhibited apatite-forming ability in SBF. Conclusions: LAB process is effective for CaP coating on light-cured dental composite resins and improving their osteoconductivity. Clinical significance: The LAB process is a potential new tool to create a cementum-like osteoconductive surface on dental composite resins

    A Case of Cutaneous Cylindroma Accompanied with Atypical Hemangioma

    No full text

    The examination of welfare community from the view point of barrier-free in child-rearing

    Get PDF
    The "barrier-free in child-rearing" has been used as an expression that showed the maintenance of the environment of living that supported the child-rearing. There is an aim promoting barrierfree in child-rearing, such as the public buildings, the public transport facilities, and the city park, etc. The barrier-free in child-rearing needs not only material maintenances but also consciousness of people against the barrier-free in child-rearing. This research will show the information that the parents who are in child-rearing tend to miss out at the facilities concerning the barrier-free in child-rearing. As a result, to improve the convenience with utilization of facilities from the parents in child-rearing of view, as well as the wheelchair marks, the mark that is available for the parents in child-rearing. In addition there is effort that provides some information with publicity. Furthermore, user will feel mental barrier from the building structures. Therefore there are some cases that they will hesitate to use the facilities even staff recommend it
    corecore