4,348 research outputs found

    Production of vector resonances at the LHC via WZ-scattering: a unitarized EChL analysis

    Get PDF
    In the present work we study the production of vector resonances at the LHC by means of the vector boson scattering WZ→WZWZ \to WZ and explore the sensitivities to these resonances for the expected future LHC luminosities. We are assuming that these vector resonances are generated dynamically from the self interactions of the longitudinal gauge bosons, WLW_L and ZLZ_L, and work under the framework of the electroweak chiral Lagrangian to describe in a model independent way the supposedly strong dynamics of these modes. The properties of the vector resonances, mass, width and couplings to the WW and ZZ gauge bosons are derived from the inverse amplitude method approach. We implement all these features into a single model, the IAM-MC, adapted for MonteCarlo, built in a Lagrangian language in terms of the electroweak chiral Lagrangian and a chiral Lagrangian for the vector resonances, which mimics the resonant behavior of the IAM and provides unitary amplitudes. The model has been implemented in MadGraph, allowing us to perform a realistic study of the signal versus background events at the LHC. In particular, we have focused our study on the pp→WZjjpp\to WZjj type of events, discussing first on the potential of the hadronic and semileptonic channels of the final WZWZ, and next exploring in more detail the clearest signals. These are provided by the leptonic decays of the gauge bosons, leading to a final state with ℓ1+ℓ1−ℓ2+νjj\ell_1^+\ell_1^-\ell_2^+\nu jj, ℓ=e,μ\ell=e,\mu, having a very distinctive signature, and showing clearly the emergence of the resonances with masses in the range of 1.5-2.5 TeV, which we have explored.Comment: Revised version accepted for publication in JHEP. Enlarged analysis. References added. 44 pages, 23 figures, 3 table

    The flaring and quiescent components of the solar corona

    Full text link
    The solar corona is a template to understand stellar activity. The Sun is a moderately active star, and its corona differs from active stars: active stellar coronae have a double-peaked EM(T) with the hot peak at 8-20 MK, while the non flaring solar corona has one peak at 1-2 MK. We study the average contribution of flares to the solar EM(T) to investigate indirectly the hypothesis that the hot peak of the EM(T) of active stellar coronae is due to a large number of unresolved solar-like flares, and to infer properties on the flare distribution from nano- to macro-flares. We measure the disk-integrated time-averaged emission measure, EM_F(T), of an unbiased sample of solar flares analyzing uninterrupted GOES/XRS light curves over time intervals of one month. We obtain the EM_Q(T) of quiescent corona for the same time intervals from the Yohkoh/SXT data. To investigate how EM_F(T) and EM_Q(T) vary with the solar cycle, we evaluate them at different phases of the cycle (from Dec. 1991 to Apr. 1998). Irrespective of the solar cycle phase, EM_F(T) appears like a peak of the distribution significantly larger than the values of EM_Q(T) for T~5-10 MK. As a result the time-averaged EM(T) of the whole solar corona is double-peaked, with the hot peak, due to time-averaged flares, located at temperature similar of that of active stars, but less enhanced. The EM_F(T) shape supports the hypothesis that the hot EM(T) peak of active coronae is due to unresolved solar-like flares. If this is the case, quiescent and flare components should follow different scaling laws for increasing stellar activity. In the assumption that the heating of the corona is entirely due to flares, from nano- to macro-flares, then either the flare distribution or the confined plasma response to flares, or both, are bimodal.Comment: 8 pages, 7 postscript figures, accepted for publication in Astronomy and Astrophysic

    Refining the scalar and tensor contributions in τ→πππντ\tau\to \pi\pi\pi\nu_\tau decays

    Get PDF
    In this article we analyze the contribution from intermediate spin-0 and spin-2 resonances to the τ→νπππ\tau\to\nu \pi\pi\pi decay by means of a chiral invariant Lagrangian incorporating these mesons. In particular, we study the corresponding axial-vector form-factors. The advantage of this procedure with respect to previous analyses is that it incorporates chiral (and isospin) invariance and, hence, the partial conservation of the axial-vector current. This ensures the recovery of the right low-energy limit, described by chiral perturbation theory, and the transversality of the current in the chiral limit at all energies. Furthermore, the meson form-factors are further improved by requiring appropriate QCD high-energy conditions. We end up with a brief discussion on its implementation in the Tauola Monte Carlo and the prospects for future analyses of Belle's data.Comment: 32 pages, 13 figures. Extended discussion on the numerical importance of the tensor and scalar resonances and the parametrization of the scalar propagator. Version published in JHE

    Test de activación de basófilos en el diagnóstico de alergia a medicamentos

    Get PDF
    In this paper we study the reliability of the basophil activation test (BAT) in the "in-vitro" diagnosis of allergy to betalactams and to metamizol, and the sensitivity and specificity of the technique are analyzed. To this end, we studied 58 patients allergic to betalactam antibiotics with a positive cutaneous test facing any derivative of penicillin and 30 healthy controls who tolerated betalactams, and 26 patients allergic to metamizol with an immediate reaction and 30 healthy controls who tolerated the medicine. Sensitivity to BAT in allergy to betalactams was 52.8%, and specificity was 92.6%. For metamizol, sensitivity was 42.3% and specificity was 100%. The positive predictive value of BAT in allergy to betalactams was 18.9% and the negative predictive value was 98.4%. For metamizol, the positive predictive value of the technique was 100% and the negative predictive value was 99.4%. The joint use of BAT and CAP (specific IgE) makes it possible to diagnose some 65% of patients allergic to betalactams. The combined use of cutaneous tests and BAT in allergy to metamizol detects 70% of the cases. BAT is a useful, non-invasive technique in the "in-vitro" diagnosis of allergy to betalactams and metamizol

    Optimum quantum dot size for highly efficient fluorescence bioimaging

    Get PDF
    Semiconductor quantum dots of few nanometers have demonstrated a great potential for bioimaging. The size determines the emitted color, but it is also expected to play an important role in the image brightness. In this work, the size dependence of the fluorescence quantum yield of the highly thermal sensitive CdTe quantum dots has been systematically investigated by thermal lens spectroscopy. It has been found that an optimum quantum yield is reached for 3.8-nm quantum dots. The presence of this optimum size has been corroborated in both one-photon excited fluorescence experiments and two-photon fluorescence microscopy of dot-incubated cancer cells. Combination of quantum yield and fluorescence decay time measurements supports that the existence of this optimum size emerges from the interplay between the frequency-dependent radiative emission rate and the size-dependent coupling strength between bulk excitons and surface trapping states
    • …
    corecore