136 research outputs found

    Circulating miR-184 is a potential predictive biomarker of cardiac damage in Anderson–Fabry disease

    Get PDF
    open21noFunding: This work was supported by the Italian Ministry of Health (PE-2013-02356818) to GCEnzyme replacement therapy (ERT) is a mainstay of treatment for Anderson–Fabry disease (AFD), a pathology with negative effects on the heart and kidneys. However, no reliable biomarkers are available to monitor its efficacy. Therefore, we tested a panel of four microRNAs linked with cardiac and renal damage in order to identify a novel biomarker associated with AFD and modulated by ERT. To this end, 60 patients with a definite diagnosis of AFD and on chronic ERT, and 29 age- and sex-matched healthy individuals, were enrolled by two Italian university hospitals. Only miR-184 met both conditions: its level discriminated untreated AFD patients from healthy individuals (c-statistic = 0.7522), and it was upregulated upon ERT (P < 0.001). On multivariable analysis, miR-184 was independently and inversely associated with a higher risk of cardiac damage (odds ratio = 0.86; 95% confidence interval [CI] = 0.76–0.98; P = 0.026). Adding miR-184 to a comprehensive clinical model improved the prediction of cardiac damage in terms of global model fit, calibration, discrimination, and classification accuracy (continuous net reclassification improvement = 0.917, P < 0.001; integrated discrimination improvement [IDI] = 0.105, P = 0.017; relative IDI = 0.221, 95% CI = 0.002–0.356). Thus, miR-184 is a circulating biomarker of AFD that changes after ERT. Assessment of its level in plasma could be clinically valuable in improving the prediction of cardiac damage in AFD patients.openSalamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G.Salamon I.; Biagini E.; Kunderfranco P.; Roncarati R.; Ferracin M.; Taglieri N.; Nardi E.; Laprovitera N.; Tomasi L.; Santostefano M.; Ditaranto R.; Vitale G.; Cavarretta E.; Pisani A.; Riccio E.; Aiello V.; Capelli I.; La Manna G.; Galie N.; Spinelli L.; Condorelli G

    An international cohort study of autosomal dominant tubulointerstitial kidney disease due to REN mutations identifies distinct clinical subtypes

    Get PDF
    There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct

    Dose-dependent localization of TCDD in isolated centrilobular and periportal hepatocytes

    No full text

    Molecular mechanism of inhibition of estrogen-induced cathepsin D gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in MCF-7 cells.

    Get PDF
    17 beta-Estradiol (E2) induces cathepsin D mRNA levels and intracellular levels of immunoreactive protein in MCF-7 human breast cancer cells. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alone does not affect cathepsin D gene expression in this cell line; however, in cells cotreated with TCDD and E2, TCDD inhibited E2-induced cathepsin D mRNA levels, the rate of gene transcription, and levels of immunoreactive protein. The inhibitory responses were observed within 30 to 120 min after the cells were treated with TCDD. TCDD also inhibited E2-induced secreted alkaline phosphatase activity in aryl hydrocarbon (Ah)-responsive MCF-7 and wild-type mouse Hepa 1c1c7 cells cotransfected with the human estrogen receptor (hER) and the pBC12/S1/pac plasmid, which contains the 5' promoter region (-296/+57) of the cathepsin D gene and an alkaline phosphatase reporter gene. The E2-responsive ER/Sp1 sequence (-199 to -165) in the cathepsin D 5' region contains an imperfect GTGCGTG (-175/-181) xenobiotic responsive element (XRE); the role of this sequence in Ah responsiveness was investigated in gel electrophoretic mobility shift assays and with plasmid constructs containing a wild-type ER/Sp1 oligonucleotide or a mutant ER/Sp1-"XRE" oligonucleotide containing two C-->A mutations in the XRE sequence (antisense strand). In plasmid constructs which contained a chloramphenicol acetyltransferase reporter gene and the wild-type ER/Sp1 promoter sequence, E2-induced chloramphenicol acetyltransferase activity and mRNA levels were inhibited by TCDD whereas no inhibition was observed with the mutant ER/Sp1-"XRE" plasmids. Electrophoretic mobility shift assays showed that the nuclear or transformed cytosolic Ah receptor complex blocked formation of the ER-Sp1 complex with the wild-type but not the ER/Sp1 mutant oligonucleotide. Moreover, incubation of the wild-type bromodeoxyuridine-substituted ER/Sp1 oligonucleotide with the nuclear Ah receptor complex gave a specifically bound cross-linked 200-kDa band. These data demonstrate that Ah receptor-mediated inhibition of E2-induced cathepsin D gene expression is due to disruption of the ER-Sp1 complex by targeted interaction with an overlapping XRE
    corecore