79 research outputs found

    Continuous media interpretation of supersymmetric Wess-Zumino type models

    Get PDF
    Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation.Comment: 14 pages, Latex, No Figure

    Pre- and Postharvest Microbial and Cytogenetic Assessment of Irradiated Philippine Aglibut Sweet Tamarind (AST) Fruit (Tamarindus Indica)

    Get PDF
    The pre-and post-harvest practices of Aglibut Sweet Tamarind farmers were determined and correlated t

    Distribution of non-AT(1), non-AT(2) binding of (125)I-Sarcosine(1), Isoleucine(8) angiotensin II in neurolysin knockout mouse brains

    Get PDF
    The recent identification of a novel binding site for angiotensin (Ang) II as the peptidase neurolysin (E.C. 3.4.24.16) has implications for the renin-angiotensin system (RAS). This report describes the distribution of specific binding of 125I-Sarcosine1, Isoleucine8 Ang II (125I-SI Ang II) in neurolysin knockout mouse brains compared to wild-type mouse brains using quantitative receptor autoradiography. In the presence of p-chloromercuribenzoic acid (PCMB), which unmasks the novel binding site, widespread distribution of specific (3 microM Ang II displaceable) 125I-SI Ang II binding in 32 mouse brain regions was observed. Highest levels of binding >700 fmol/g initial wet weight were seen in hypothalamic, thalamic and septal regions, while the lowest level of binding <300 fmol/g initial wet weight was in the mediolateral medulla. 125I-SI Ang II binding was substantially higher by an average of 85% in wild-type mouse brains compared to neurolysin knockout brains, suggesting the presence of an additional non-AT1, non-AT2, non-neurolysin Ang II binding site in the mouse brain. Binding of 125I-SI Ang II to neurolysin in the presence of PCMB was highest in hypothalamic and ventral cortical brain regions, but broadly distributed across all regions surveyed. Non-AT1, non-AT2, non-neurolysin binding was also highest in the hypothalamus but had a different distribution than neurolysin. There was a significant reduction in AT2 receptor binding in the neurolysin knockout brain and a trend towards decreased AT1 receptor binding. In the neurolysin knockout brains, the size of the lateral ventricles was increased by 56% and the size of the mid forebrain (-2.72 to +1.48 relative to Bregma) was increased by 12%. These results confirm the identity of neurolysin as a novel Ang II binding site, suggesting that neurolysin may play a significant role in opposing the pathophysiological actions of the brain RAS and influencing brain morphology

    Three-algebra for supermembrane and two-algebra for superstring

    Full text link
    While string or Yang-Mills theories are based on Lie algebra or two-algebra structure, recent studies indicate that M-theory may require a one higher, three-algebra structure. Here we construct a covariant action for a supermembrane in eleven dimensions, which is invariant under global supersymmetry, local fermionic symmetry and worldvolume diffeomorphism. Our action is classically on-shell equivalent to the celebrated Bergshoeff-Sezgin-Townsend action. However, the novelty is that we spell the action genuinely in terms of Nambu three-brackets: All the derivatives appear through Nambu brackets and hence it manifests the three-algebra structure. Further the double dimensional reduction of our action gives straightforwardly to a type IIA string action featuring two-algebra. Applying the same method, we also construct a covariant action for type IIB superstring, leading directly to the IKKT matrix model.Comment: 1+15 pages, no figure; Refs added, Accepted for publication in JHE

    Influence of dietary Chlorella vulgaris and carbohydrate-active enzymes on growth performance, meat quality and lipid composition of broiler chickens

    Get PDF
    Article in pressHerein, we investigated the effect of Chlorella vulgaris as ingredient (10% of incorporation) in broiler diets, supplemented or not with 2 formulations of Carbohydrate-Active enZymes (CAZymes; Rovabio Excel AP and a mixture of recombinant CAZymes, composed by an exo-b-glucosaminidase, an alginate lyase, a peptidoglycan N-acetylmuramic acid deacetylase and a lysozyme), on growth performance, meat quality, fatty acid composition, oxidative stability, and sensory traits. One hundred twenty 1-day-old Ross 308 male birds were randomly assigned to one of the 4 experimental diets (n 5 30): corn-soybean meal–basal diet (control), basal diet with 10% C. vulgaris (CV), CV supplemented with 0.005% of a commercialCAZymecocktail (Rovabio Excel AP), (CV1R), and CV supplemented with 0.01% of a 4- CAZyme mixture previously selected (CV 1 M) during the experimental period lasted from day 21 to day 35. Body weight gain and feed conversion rate of broilers were not affected by C. vulgaris but digesta viscosity increased more than 2-fold (P , 0.001) relative to the control. In addition, neither cooking loss, shear force, juiciness, flavor nor off-flavor was impaired by dietary treatments (P.0.05). By contrast, the dietary C. vulgaris increased tenderness, yellowness (b*) and total carotenoids in breast and thigh meats. However, no additional protective effect against lipid oxidation was observed in meat with the inclusion of microalga. Chlorella vulgaris, independently of CAZymes, had a minor impact on meat fatty acid composition but improved the proportion of some beneficial fatty acids. In summary, our data indicate a slight improvement of broiler meat quality and lipid nutritional value, without impairment of broilers’ growth performance, thus supporting the usefulness of this microalga in poultry diets, up to this high level of incorporation. By contrast, the selected CAZyme mixtures used do not significantly improve the release of microalga nutrients in poultry diets, through the disruption of microalga cell wall, which warrants further researchinfo:eu-repo/semantics/acceptedVersio
    corecore