49,869 research outputs found

    New family of potentials with analytical twiston-like solutions

    Full text link
    In this letter we present a new approach to find analytical twiston models. The effective two-field model was constructed by a non-trivial combination of two one field systems. In such an approach we successfully build analytical models which are satisfied by a combination of two defect-like solutions, where one is responsible to twist the molecular chain by 180 0180^{\,0}, while the other implies in a longitudinal movement. Such a longitudinal movement can be fitted to have the size of the distance between adjacent molecular groups. The procedure works nicely and can be used to describe the dynamics of several other molecular chains.Comment: 7 pages, 3 figure

    Gaussian quantum Monte Carlo methods for fermions

    Get PDF
    We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application, we calculate finite-temperature properties of the two dimensional Hubbard model.Comment: 4 pages, 3 figures, Revised version has expanded discussion, simplified mathematical presentation, and application to 2D Hubbard mode

    Elodie metallicity-biased search for transiting Hot Jupiters I. Two Hot Jupiters orbiting the slightly evolved stars HD118203 and HD149143

    Full text link
    We report the discovery of a new planet candidate orbiting the subgiant star HD118203 with a period of P=6.1335 days. The best Keplerian solution yields an eccentricity e=0.31 and a minimum mass m2sin(i)=2.1MJup for the planet. This star has been observed with the ELODIE fiber-fed spectrograph as one of the targets in our planet-search programme biased toward high-metallicity stars, on-going since March 2004 at the Haute-Provence Observatory. An analysis of the spectroscopic line profiles using line bisectors revealed no correlation between the radial velocities and the line-bisector orientations, indicating that the periodic radial-velocity signal is best explained by the presence of a planet-mass companion. A linear trend is observed in the residuals around the orbital solution that could be explained by the presence of a second companion in a longer-period orbit. We also present here our orbital solution for another slightly evolved star in our metal-rich sample, HD149143, recently proposed to host a 4-d period Hot Jupiter by the N2K consortium. Our solution yields a period P=4.09 days, a marginally significant eccentricity e=0.08 and a planetary minimum mass of 1.36MJup. We checked that the shape of the spectral lines does not vary for this star as well.Comment: Accepted in A&A (6 pages, 6 figures

    Building analytical three-field cosmological models

    Full text link
    A difficult task to deal with is the analytical treatment of models composed by three real scalar fields, once their equations of motion are in general coupled and hard to be integrated. In order to overcome this problem we introduce a methodology to construct three-field models based on the so-called "extension method". The fundamental idea of the procedure is to combine three one-field systems in a non-trivial way, to construct an effective three scalar field model. An interesting scenario where the method can be implemented is within inflationary models, where the Einstein-Hilbert Lagrangian is coupled with the scalar field Lagrangian. We exemplify how a new model constructed from our method can lead to non-trivial behaviors for cosmological parameters.Comment: 11 pages, and 3 figures, updated version published in EPJ

    Diffraction and an infrared finite gluon propagator

    Get PDF
    We discuss some phenomenological applications of an infrared finite gluon propagator characterized by a dynamically generated gluon mass. In particular we compute the effect of the dynamical gluon mass on pppp and pˉp{\bar{p}}p diffractive scattering. We also show how the data on γp\gamma p photoproduction and hadronic γγ\gamma \gamma reactions can be derived from the pppp and pˉp\bar{p}p forward scattering amplitudes by assuming vector meson dominance and the additive quark model.Comment: 4 pages, 7 figures, added references and figures, changed structure. Contribution to Proceedings of XVIIIth Reuniao de Trabalho sobre Interacoes Hadronicas, Sao Paulo, Brazil, 22-24 May, 200

    Density Dependent Parametrization Models: Formalism and Applications

    Full text link
    In this work we derive a formalism to incorporate asymmetry and temperature effects in the Brown-Rho (BR) scaled lagrangian model in a mean field theory. The lagrangian density discussed in this work requires less parameters than the usual models with density dependent couplings. We also present the formalism with the inclusion of the eight lightest baryons, two lightest leptons, beta equilibrium and charge neutrality in order to apply the BR scaled model to the study of neutron stars. The results are again compared with the ones obtained from another density dependent parametrization model. The role played by the rearrangement term at T=0 for nuclear or neutron star matter and at finite temperature is investigated. The BR scaled model is shown to be a good tool in studies involving density dependent effective masses and in astrophysics applications.Comment: 23 pages, 10 figure

    Inductive learning spatial attention

    Get PDF
    This paper investigates the automatic induction of spatial attention from the visual observation of objects manipulated on a table top. In this work, space is represented in terms of a novel observer-object relative reference system, named Local Cardinal System, defined upon the local neighbourhood of objects on the table. We present results of applying the proposed methodology on five distinct scenarios involving the construction of spatial patterns of coloured blocks
    • …
    corecore