48,646 research outputs found

    K X-Ray Energies and Transition Probabilities for He-, Li- and Be-like Praseodymium ions

    Full text link
    Theoretical transition energies and probabilities for He-, Li- and Be-like Praseodymium ions are calculated in the framework of the multi-configuration Dirac-Fock method (MCDF), including QED corrections. These calculated values are compared to recent experimental data obtained in the Livermore SuperEBIT electron beam ion trap facility

    New expression for the K-shell ionization

    Full text link
    A new expression for the total K-shell ionization cross section by electron impact based on the relativistic extension of the binary encounter Bethe (RBEB) model, valid from ionization threshold up to relativistic energies, is proposed. The new MRBEB expression is used to calculate the K-shell ionization cross sections by electron impact for the selenium atom. Comparison with all, to our knowledge, available experimental data shows good agreement

    Diffusion-limited deposition with dipolar interactions: fractal dimension and multifractal structure

    Full text link
    Computer simulations are used to generate two-dimensional diffusion-limited deposits of dipoles. The structure of these deposits is analyzed by measuring some global quantities: the density of the deposit and the lateral correlation function at a given height, the mean height of the upper surface for a given number of deposited particles and the interfacial width at a given height. Evidences are given that the fractal dimension of the deposits remains constant as the deposition proceeds, independently of the dipolar strength. These same deposits are used to obtain the growth probability measure through Monte Carlo techniques. It is found that the distribution of growth probabilities obeys multifractal scaling, i.e. it can be analyzed in terms of its f(α)f(\alpha) multifractal spectrum. For low dipolar strengths, the f(α)f(\alpha) spectrum is similar to that of diffusion-limited aggregation. Our results suggest that for increasing dipolar strength both the minimal local growth exponent αmin\alpha_{min} and the information dimension D1D_1 decrease, while the fractal dimension remains the same.Comment: 10 pages, 7 figure

    Steady-state entanglement between distant quantum dots in photonic crystal dimers

    Full text link
    We show that two spatially separated semiconductor quantum dots under resonant and continuous-wave excitation can be strongly entangled in the steady-state, thanks to their radiative coupling by mutual interaction through the normal modes of a photonic crystal dimer. We employ a quantum master equation formalism to quantify the steady-state entanglement by calculating the system {\it negativity}. Calculations are specified to consider realistic semiconductor nanostructure parameters for the photonic crystal dimer-quantum dots coupled system, determined by a guided mode expansion solution of Maxwell equations. Negativity values of the order of 0.1 (20%20\% of the maximum value) are shown for interdot distances that are larger than the resonant wavelength of the system. It is shown that the amount of entanglement is almost independent of the interdot distance, as long as the normal mode splitting of the photonic dimer is larger than their linewidths, which becomes the only requirement to achieve a local and individual qubit addressing. Considering inhomogeneously broadened quantum dots, we find that the steady-state entanglement is preserved as long as the detuning between the two quantum dot resonances is small when compared to their decay rates. The steady-state entanglement is shown to be robust against the effects of pure dephasing of the quantum dot transitions. We finally study the entanglement dynamics for a configuration in which one of the two quantum dots is initially excited and find that the transient negativity can be enhanced by more than a factor of two with respect to the steady-state value. These results are promising for practical applications of entangled states at short time scales.Comment: 10 pages, 7 figure

    Nitric Oxide Regulates Neurogenesis in the Hippocampus following Seizures

    Get PDF
    Hippocampal neurogenesis is changed by brain injury. When neuroinflammation accompanies injury, activation of resident microglial cells promotes the release of inflammatory cytokines and reactive oxygen/nitrogen species like nitric oxide (NO). In these conditions, NO promotes proliferation of neural stem cells (NSC) in the hippocampus. However, little is known about the role of NO in the survival and differentiation of newborn cells in the injured dentate gyrus. Here we investigated the role of NO following seizures in the regulation of proliferation, migration, differentiation, and survival of NSC in the hippocampus using the kainic acid (KA) induced seizuremouse model. We show that NO increased the proliferation of NSC and the number of neuroblasts following seizures but was detrimental to the survival of newborn neurons. NO was also required for the maintenance of long-term neuroinflammation. Taken together, our data show that NO positively contributes to the initial stages of neurogenesis following seizures but compromises survival of newborn neurons.Foundation for Science and Technology (FCT, Portugal); COMPETE; FEDER [PTDC/SAU-NEU/102612/2008, PTDC/NEU-OSD/0473/2012, PEst-C/SAU/LA0001/2013-2014, PEst-OE/EQB/LA0023/2013-2014]; FCT, Portugal [SFRH/BPD/78901/2011, SFRH/BD/77903/2011

    Diffusion-limited deposition of dipolar particles

    Full text link
    Deposits of dipolar particles are investigated by means of extensive Monte Carlo simulations. We found that the effect of the interactions is described by an initial, non-universal, scaling regime characterized by orientationally ordered deposits. In the dipolar regime, the order and geometry of the clusters depend on the strength of the interactions and the magnetic properties are tunable by controlling the growth conditions. At later stages, the growth is dominated by thermal effects and the diffusion-limited universal regime obtains, at finite temperatures. At low temperatures the crossover size increases exponentially as T decreases and at T=0 only the dipolar regime is observed.Comment: 5 pages, 4 figure

    Manipulation of the dynamics of many-body systems via quantum control methods

    Full text link
    We investigate how dynamical decoupling methods may be used to manipulate the time evolution of quantum many-body systems. These methods consist of sequences of external control operations designed to induce a desired dynamics. The systems considered for the analysis are one-dimensional spin-1/2 models, which, according to the parameters of the Hamiltonian, may be in the integrable or non-integrable limits, and in the gapped or gapless phases. We show that an appropriate control sequence may lead a chaotic chain to evolve as an integrable chain and a system in the gapless phase to behave as a system in the gapped phase. A key ingredient for the control schemes developed here is the possibility to use, in the same sequence, different time intervals between control operations.Comment: 10 pages, 3 figure
    • …
    corecore