6,978 research outputs found

    Generation of focusing ion beams by magnetized electron sheath acceleration.

    Get PDF
    We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration. The net result is a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The predicted improvements in ion source characteristics are desirable for applications and suggest a route to experimentally confirm magnetization-related effects in the high energy density regime. We additionally perform a comparison between 2D and 3D simulation geometry, on which basis we predict the feasibility of observing magnetic field effects under experimentally relevant conditions

    A hybrid intelligent agent for notification of users distracted by mobile phones in an urban environment

    Get PDF
    Mobile devices are now ubiquitous in daily life and the number of activities that can be performed using them is continually growing. This implies increased attention being placed on the device and diverted away from events taking place in the surrounding environment. The impact of using a smartphone on pedestrians in the vicinity of urban traffic has been investigated in a multimodal, fully immersive, virtual reality environment. Based on experimental data collected, an agent to improve the attention of users in such situations has been developed. The proposed agent uses explicit, contextual data from experimental conditions to feed a statistical learning model. The agent’s decision process is aimed at notifying users when they become unaware of critical events in their surroundings

    Modeling Evolutionary Dynamics of Lurking in Social Networks

    Full text link
    Lurking is a complex user-behavioral phenomenon that occurs in all large-scale online communities and social networks. It generally refers to the behavior characterizing users that benefit from the information produced by others in the community without actively contributing back to the production of social content. The amount and evolution of lurkers may strongly affect an online social environment, therefore understanding the lurking dynamics and identifying strategies to curb this trend are relevant problems. In this regard, we introduce the Lurker Game, i.e., a model for analyzing the transitions from a lurking to a non-lurking (i.e., active) user role, and vice versa, in terms of evolutionary game theory. We evaluate the proposed Lurker Game by arranging agents on complex networks and analyzing the system evolution, seeking relations between the network topology and the final equilibrium of the game. Results suggest that the Lurker Game is suitable to model the lurking dynamics, showing how the adoption of rewarding mechanisms combined with the modeling of hypothetical heterogeneity of users' interests may lead users in an online community towards a cooperative behavior.Comment: 13 pages, 5 figures. Accepted at CompleNet 201

    The Architectural Design Rules of Solar Systems based on the New Perspective

    Full text link
    On the basis of the Lunar Laser Ranging Data released by NASA on the Silver Jubilee Celebration of Man Landing on Moon on 21st July 1969-1994, theoretical formulation of Earth-Moon tidal interaction was carried out and Planetary Satellite Dynamics was established. It was found that this mathematical analysis could as well be applied to Star and Planets system and since every star could potentially contain an extra-solar system, hence we have a large ensemble of exoplanets to test our new perspective on the birth and evolution of solar systems. Till date 403 exoplanets have been discovered in 390 extra-solar systems. I have taken 12 single planet systems, 4 Brown Dwarf - Star systems and 2 Brown Dwarf pairs. Following architectural design rules are corroborated through this study of exoplanets. All planets are born at inner Clarke Orbit what we refer to as inner geo-synchronous orbit in case of Earth-Moon System. By any perturbative force such as cosmic particles or radiation pressure, the planet gets tipped long of aG1 or short of aG1. Here aG1 is inner Clarke Orbit. The exoplanet can either be launched on death spiral as CLOSE HOT JUPITERS or can be launched on an expanding spiral path as the planets in our Solar System are. It was also found that if the exo-planet are significant fraction of the host star then those exo-planets rapidly migrate from aG1 to aG2 and have very short Time Constant of Evolution as Brown Dwarfs have. This vindicates our basic premise that planets are always born at inner Clarke Orbit. This study vindicates the design rules which had been postulated at 35th COSPAR Scientific Assembly in 2004 at Paris, France, under the title ,New Perspective on the Birth & Evolution of Solar Systems.Comment: This paper has been reported to Earth,Moon and Planets Journal as MOON-S-09-0007

    Transport coefficients for inelastic Maxwell mixtures

    Get PDF
    The Boltzmann equation for inelastic Maxwell models is used to determine the Navier-Stokes transport coefficients of a granular binary mixture in dd dimensions. The Chapman-Enskog method is applied to solve the Boltzmann equation for states near the (local) homogeneous cooling state. The mass, heat, and momentum fluxes are obtained to first order in the spatial gradients of the hydrodynamic fields, and the corresponding transport coefficients are identified. There are seven relevant transport coefficients: the mutual diffusion, the pressure diffusion, the thermal diffusion, the shear viscosity, the Dufour coefficient, the pressure energy coefficient, and the thermal conductivity. All these coefficients are {\em exactly} obtained in terms of the coefficients of restitution and the ratios of mass, concentration, and particle sizes. The results are compared with known transport coefficients of inelastic hard spheres obtained analytically in the leading Sonine approximation and by means of Monte Carlo simulations. The comparison shows a reasonably good agreement between both interaction models for not too strong dissipation, especially in the case of the transport coefficients associated with the mass flux.Comment: 9 figures, to be published in J. Stat. Phy

    Digit-only sauropod pes trackways from China - evidence of swimming or a preservational phenomenon?

    Get PDF
    For more than 70 years unusual sauropod trackways have played a pivotal role in debates about the swimming ability of sauropods. Most claims that sauropods could swim have been based on manus-only or manus-dominated trackways. However none of these incomplete trackways has been entirely convincing, and most have proved to be taphonomic artifacts, either undertracks or the result of differential depth of penetration of manus and pes tracks, but otherwise showed the typical pattern of normal walking trackways. Here we report an assemblage of unusual sauropod tracks from the Lower Cretaceous Hekou Group of Gansu Province, northern China, characterized by the preservation of only the pes claw traces, that we interpret as having been left by walking, not buoyant or swimming, individuals. They are interpreted as the result of animals moving on a soft mud-silt substrate, projecting their claws deeply to register their traces on an underlying sand layer where they gained more grip during progression. Other sauropod walking trackways on the same surface with both pes and manus traces preserved, were probably left earlier on relatively firm substrates that predated the deposition of soft mud and silt . Presently, there is no convincing evidence of swimming sauropods from their trackways, which is not to say that sauropods did not swim at all

    Giant Barocaloric Effect at the Spin Crossover Transition of a Molecular Crystal

    Get PDF
    The first experimental evidence for a giant, conventional barocaloric effect (BCE) associated with a pressure‐driven spin crossover transition near room temperature is provided. Magnetometry, neutron scattering, and calorimetry are used to explore the pressure dependence of the SCO phase transition in polycrystalline samples of protonated and partially deuterated [FeL2][BF4]2 [L = 2,6‐di(pyrazol‐1‐yl)pyridine] at applied pressures of up to 120 MPa (1200 bar). The data indicate that, for a pressure change of only 0–300 bar (0–30 MPa), an adiabatic temperature change of 3 K is observed at 262 K or 257 K in the protonated and deuterated materials, respectively. This BCE is equivalent to the magnetocaloric effect (MCE) observed in gadolinium in a magnetic field change of 0–1 Tesla. The work confirms recent predictions that giant, conventional BCEs will be found in a wide range of SCO compounds
    corecore