776 research outputs found

    Kerr-AdS and its Near-horizon Geometry: Perturbations and the Kerr/CFT Correspondence

    Get PDF
    We investigate linear perturbations of spin-s fields in the Kerr-AdS black hole and in its near-horizon geometry (NHEK-AdS), using the Teukolsky master equation and the Hertz potential. In the NHEK-AdS geometry we solve the associated angular equation numerically and the radial equation exactly. Having these explicit solutions at hand, we search for linear mode instabilities. We do not find any (non-)axisymmetric instabilities with outgoing boundary conditions. This is in agreement with a recent conjecture relating the linearized stability properties of the full geometry with those of its near-horizon geometry. Moreover, we find that the asymptotic behaviour of the metric perturbations in NHEK-AdS violates the fall-off conditions imposed in the formulation of the Kerr/CFT correspondence (the only exception being the axisymmetric sector of perturbations).Comment: 26 pages. 4 figures. v2: references added. matches published versio

    Ultraspinning instability: the missing link

    Full text link
    We study linearized perturbations of Myers-Perry black holes in d=7, with two of the three angular momenta set to be equal, and show that instabilities always appear before extremality. Analogous results are expected for all higher odd d. We determine numerically the stationary perturbations that mark the onset of instability for the modes that preserve the isometries of the background. The onset is continuously connected between the previously studied sectors of solutions with a single angular momentum and solutions with all angular momenta equal. This shows that the near-extremality instabilities are of the same nature as the ultraspinning instability of d>5 singly-spinning solutions, for which the angular momentum is unbounded. Our results raise the question of whether there are any extremal Myers-Perry black holes which are stable in d>5.Comment: 19 pages. 1 figur

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    An instability of higher-dimensional rotating black holes

    Full text link
    We present the first example of a linearized gravitational instability of an asymptotically flat vacuum black hole. We study perturbations of a Myers-Perry black hole with equal angular momenta in an odd number of dimensions. We find no evidence of any instability in five or seven dimensions, but in nine dimensions, for sufficiently rapid rotation, we find perturbations that grow exponentially in time. The onset of instability is associated with the appearance of time-independent perturbations which generically break all but one of the rotational symmetries. This is interpreted as evidence for the existence of a new 70-parameter family of black hole solutions with only a single rotational symmetry. We also present results for the Gregory-Laflamme instability of rotating black strings, demonstrating that rotation makes black strings more unstable.Comment: 38 pages, 13 figure

    The Mechanisms of Codon Reassignments in Mitochondrial Genetic Codes

    Get PDF
    Many cases of non-standard genetic codes are known in mitochondrial genomes. We carry out analysis of phylogeny and codon usage of organisms for which the complete mitochondrial genome is available, and we determine the most likely mechanism for codon reassignment in each case. Reassignment events can be classified according to the gain-loss framework. The gain represents the appearance of a new tRNA for the reassigned codon or the change of an existing tRNA such that it gains the ability to pair with the codon. The loss represents the deletion of a tRNA or the change in a tRNA so that it no longer translates the codon. One possible mechanism is Codon Disappearance, where the codon disappears from the genome prior to the gain and loss events. In the alternative mechanisms the codon does not disappear. In the Unassigned Codon mechanism, the loss occurs first, whereas in the Ambiguous Intermediate mechanism, the gain occurs first. Codon usage analysis gives clear evidence of cases where the codon disappeared at the point of the reassignment and also cases where it did not disappear. Codon disappearance is the probable explanation for stop to sense reassignments and a small number of reassignments of sense codons. However, the majority of sense to sense reassignments cannot be explained by codon disappearance. In the latter cases, by analysis of the presence or absence of tRNAs in the genome and of the changes in tRNA sequences, it is sometimes possible to distinguish between the Unassigned Codon and Ambiguous Intermediate mechanisms. We emphasize that not all reassignments follow the same scenario and that it is necessary to consider the details of each case carefully.Comment: 53 pages (45 pages, including 4 figures + 8 pages of supplementary information). To appear in J.Mol.Evo

    DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients

    Get PDF
    Breast cancer (BC) is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln) or XRCC3 (Thr241Met) action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T) genotypes and BC risk in the subgroups with higher levels of chromosome damage
    corecore