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1 Introduction and summary

The Kerr black hole is the unique black hole solution in the phase diagram of stationary

solutions of d = 4 asymptotically flat Einstein gravity and, ultimately, it describes an

isolated astrophysical black hole. Therefore it is reassuring that Whiting [1], using the

results of Press and Teukolsky [2], found that the Kerr solution is linearly stable in a

mode by mode analysis of linearized non-algebraically-special gravitational perturbations.

Technically, this analysis was possible due to the Newman-Penrose formalism whereby

all the gravitational perturbation information is encoded in two decoupled complex Weyl

scalars. These are gauge invariant quantities with the same number of degrees of freedom
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as the metric perturbation. Moreover, Teukolsky [3] proved that there is a single decoupled

master equation governing the perturbations of these Weyl scalars. In a mode by mode

analysis, this master equation further separates into a radial and angular equation which

makes the analysis tractable. An interesting property of the Kerr black hole is that it has

an extreme configuration where the temperature vanishes but its entropy remains finite.

Bardeen and Horowitz [4] described how one can take a near-horizon limit of this extreme

Kerr geometry to get a spacetime similar to AdS2 × S2 that is called the near-horizon

extreme Kerr geometry (NHEK). The naive intuition suggests that a necessary but not

sufficient condition for the stability of the (near-)extreme Kerr solution is then that NHEK

itself should be stable subject to appropriate boundary conditions. Refs. [5, 6] found that

NHEK is linearly stable in a mode by mode analysis. We emphasize the fact that the above

condition is necessary but not sufficient. That is, we can have a linear instability of the full

extreme Kerr geometry − see [7–9] − that is however not captured by a linear instability

analysis of NHEK [5, 6].

In an asymptotically anti-de Sitter (AdS) background, the Kerr-AdS black hole is

the only stationary black hole of d = 4 Einstein-AdS theory whose solution is exactly

known [10].1 These black holes are linearly unstable (at least) to the (non-axisymmetric)

gravitational superradiant instability if their angular velocity is larger than 1 in AdS

units [12, 13]. Again, this conclusion can be achieved solving the Teukolsky master equation

in the Kerr-AdS black hole. Indeed, this equation can be derived as long as the background

is Petrov type D, with Kerr(-AdS) and their near-horizon geometries being in this category.

The extreme Kerr-AdS black hole also has a near-horizon geometry − the NHEK-AdS −
explicitly derived by Lü, Mei and Pope [14]. A natural question that we want to address

in this paper is whether this geometry is linearly unstable and, if so, whether its instability

teaches us something about the properties of the full geometry.

These questions relating the stability properties of full geometries to those of their

near-horizon geometries were analyzed in detail by Durkee and Reall [15]. They first

observed that, in four and higher dimensions, any known near-horizon geometry of Einstein

gravity with a cosmological constant takes the form of a compact space H fibred over

AdS2. They further found that in all these near-horizon geometries, the study of linearized

gravitational perturbations boils down to study a single Teukolsky-like master equation.

The dependence of the perturbation on the compact space coordinates can be factored

out by expanding the perturbation in eigenfunctions of a certain operator defined on H.

This effectively reduces the master equation to a form that is precisely the one for the

equation of a massive, charged, scalar field in AdS2 with a homogeneous electric field

(the latter being inherited from the rotation field of the full geometry). At this point,

one can define an “effective Breitenlöhner-Freedman (BF) bound” for the scalar field,

with the field being unstable if the effective mass of the field violates the bound. In

this context, [15] conjectured that instability of the near-horizon geometry does imply

instability of the full black hole if the unstable mode respects certain symmetries and if

1There is perturbative evidence that it might not be the only stationary black hole of the theory. Indeed,

ref. [11] constructed perturbatively a rotating black hole with a single Killing vector field by placing a Kerr-

AdS black at the core of a geon.
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appropriate boundary conditions are given. In 4 dimensions, the symmetry in question

is axisymmetry. Supporting their conjecture, axisymmetric perturbations of NHEK do

respect the BF bound, and the stability of such modes [5, 6] is consistent with the stability

of the full black hole. Further support for their conjecture comes from the near-horizon

geometries of higher-dimensional Myers-Perry black holes. Axisymmetric instabilities of the

near-horizon geometries were identified that precisely signal the onset of the axisymmetric

ultraspinning instability present in Myers-Perry black holes in d ≥ 6 [15–17]. Probably the

only other system where the Durkee-Reall conjecture can be tested (using semi-analytical

methods) is in the Kerr-AdS and NHEK-AdS pair of geometries since we just need to

solve a Teukolsky master equation. Here, we will find that NHEK-AdS is stable against

axisymmetric perturbations. This is consistent with the stability of Kerr-AdS against

axisymmetric perturbations and provides further support for the conjecture of [15]. In

addition, we do not find any instability in the non-axisymmetric sector of perturbations,

when we impose outgoing boundary conditions at the asymptotic boundaries of NHEK-AdS

(see discussion below).

A question that we leave open in our study is whether an analysis of perturbations

in NHEK-AdS is able to capture a signature of the gravitational superradiant instability

that is present in the full Kerr-AdS geometry [12, 13]. At first glance the near-horizon

geometry should be blind to this instability. The reason being that this instability re-

quires the presence of two key ingredients, namely the existence of an ergoregion and of

an asymptotic reflecting wall. It is the multiple amplification/reflection that renders the

system unstable. NHEK-AdS inherits the ergoregion from the full geometry but not its

asymptotic boundary. Therefore, naively we would not expect to find a trace of an in-

stability with a superradiant origin. However, the analysis might not be that simple and

it could be the case that an appropriate choice of boundary conditions in NHEK-AdS is

able to encode the reflecting boundary conditions of the full geometry. If this turns to be

the case, our analysis misses it because we always impose outgoing boundary conditions.

A detailed discussion of superradiant scattering in the near-NHEK-AdS geometry can be

found in [18]. For similar reasoning, we cannot rule out the possibility that a different set

of boundary conditions might lead to any other type of instability in NHEK-AdS.

Another question that we want to address concerns the Kerr/CFT correspondence

originally formulated after an analysis of NHEK. This geometry has an SL(2, R) × U(1)

isometry group, where the SL(2, R) extends the Kerr time-translation symmetry and the

U(1) is simply inherited from the axisymmetry of the Kerr solution. Guica, Hartman, Song

and Strominger (GHSS) conjectured that quantum gravity in the NHEK geometry with

certain boundary conditions is equivalent to a chiral conformal field theory (CFT) in 1+1

dimensions [19]. They then computed the microscopic entropy of the system and found it

matches the Bekenstein-Hawking entropy of the associated extreme Kerr black hole.

The choice of boundary conditions plays a fundamental role in the analysis of [19] and

is motivated entirely by considerations of the asymptotic symmetry group. The GHSS

“fall-off” conditions specify how the components hµν of the metric perturbations (about

the NHEK geometry) should behave asymptotically. GHSS’s choice guarantees that the

asymptotic symmetry group is generated by a time translation plus a single copy of the
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Virasoro algebra, the latter extending the U(1) symmetry of the background. However, as

emphasized in [5, 6], NHEK (like AdS) is a non-globally hyperbolic spacetime. In other

words, specifying initial data on a Cauchy surface is not enough to predict the future

evolution of the system. This is because, in a Carter-Penrose diagram, these geometries

have a timelike infinity that can be reached in finite time by null geodesics. Therefore to

make classical predictions about the future evolution of some initial data it is fundamental

to specify also boundary conditions. Refs. [5, 6] pointed out that we do not have the freedom

to choose them arbitrarily. This is best illustrated if we consider a massive scalar field Φ

in AdSd. Solving the Klein-Gordon equation at the asymptotic boundary we find that the

equation of motion selects the two only possible fall-offs of the field, Φ ∼ Ar−∆+ +B r−∆− .

We are strictly restricted to select one of these decays and no other, if we want to preserve

the asymptotic symmetry group.2 Similarly, the linearized Einstein equations in NHEK

select the possible decays of the gravitational perturbations and [5, 6] found that these

boundary conditions violate the GHSS “fall-off” conditions. The only exception are the

axisymmetric modes (which furthermore do not excite non-axysymmetric modes at higher

order in perturbation theory).

The original Kerr/CFT correspondence has been extended to allow for a non-vanishing

cosmological constant [14, 18] and to include higher-dimensional geometries (see [20] for

a recent review). For these backgrounds, the original GHSS “fall-off” conditions are still

those required to have an asymptotic symmetry group generated by a time translation

plus a single copy of the Virasoro algebra. So the fall-off is independent both of the

cosmological constant and of the spacetime dimension (the latter can be understood as

consequence of the fact that the near-horizon geometry always contains an AdS2 factor).

Here, we will look at the asymptotic behaviour of metric perturbations that solve the

linearized Einstein equations in NHEK-AdS. The radial dependence of these perturbations

can be found analytically and the desired perturbation decay is then obtained through a

simple series expansion. Like in the NHEK case, we find that these boundary conditions

(except for the axisymmetric modes) violate the GHSS “fall-off” conditions imposed in

the Kerr/CFT formulation of [14]. In higher dimensions, ref. [21] recently determined the

asymptotic behaviour of metric perturbations of the near-horizon geometry of the d = 5

cohomogeneity-1 Myers-Perry black hole, where the problem can be addressed analytically.

Again, there are modes that violate the GHSS boundary conditions required in [22]. The

common conclusions of the present study in Kerr-AdS, together with [5, 6, 21] in Kerr

and higher dimensions, indicate that we still need to understand why the Kerr/CFT “fall-

off” conditions and the boundary conditions required by classical physics to be predictable

from initial data are different. Addressing this question would contribute to a deeper

understanding of the correspondence. Recently, this question has started to be addressed

in [23], where it is found that there are deformations of near-horizon geometries that obey

2One has ∆± = d−1
2
±

√
(d−1)2

4
+ µ2`2, where µ is the scalar field mass and ` the cosmological length.

The requirement that the energy of the scalar field is finite further requires the scalar field mass to be above

the Breitenlöhner-Freedman bound, and once it is above the unitarity bound, only the mode with r−∆+

decay is normalizable.
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the Kerr/CFT “fall-off” conditions but are non-perturbative, i.e. they are not visible in a

linear perturbative analysis of NHEK.

The plan of the paper is as follows. In section 2 we use the Teukolsky-Newman-Penrose

formalism to find the decoupled master equation for arbitrary spin-s perturbations in the

Kerr-AdS black hole. This equation further separates into an angular equation, whose

solutions are the AdS spin-weighted spheroidal harmonics, and into a radial equation. Sec-

tion 3 repeats the same exercise but this time in the NHEK-AdS geometry, which is the

focus of our attention for the remainder of the paper. In section 4 the eigenvalues of the

angular equation are found numerically. On the other hand, the radial equation is solved

exactly in terms of hypergeometric functions. In section 5 we look for linear instabilities in

the NHEK-AdS geometry and we obtain, using the Hertz map, the asymptotic behaviour

of the metric perturbations to compare them with the Kerr/CFT fall-off conditions. The

physical interpretation and discussion of our findings are provided in this section. Ap-

pendix A provides a short summary of the Newman-Penrose formalism and the Teukolsky

perturbation equations. In appendix B we review the derivation of the the NHEK-AdS line

element. Appendix C presents the master equation of the Kerr-AdS geometry in Poincaré

coordinates.

2 Master equation for perturbations of Kerr-AdS

We begin this section with a review of properties of the Kerr-AdS spacetime relevant

for our study. Subsequently we will present the Teukolsky master equation which governs

perturbations around the Kerr-AdS background and we will separate it into a radial and an

angular part. In the flat limit all results of this section exactly reproduce their counterparts

in the Kerr geometry [3].

2.1 Properties of the spacetime

The Kerr-AdS geometry was found by Carter [10]. In the Boyer-Lindquist coordinate

system {t̂, r̂, θ, φ̂} it reads

ds2 = −∆r

Σ2

(
dt̂− a

Ξ
sin2 θ dφ̂

)2
+

Σ2

∆r
dr̂2+

Σ2

∆θ
dθ2+

∆θ

Σ2
sin2 θ

(
a dt̂− r̂2 + a2

Ξ
dφ̂

)2

, (2.1)

where

∆r =
(
r̂2 + a2

)(
1 +

r̂2

`2

)
−2Mr̂ , Ξ = 1−a

2

`2
, ∆θ = 1−a

2

`2
cos2 θ , Σ2 = r̂2+a2 cos2 θ .

(2.2)

This solution obeys Rµν = −3`−2gµν , and asymptotically approaches AdS space with radius

of curvature `. The ADM mass and angular momentum of the black hole are M/Ξ2 and

J = Ma/Ξ2, respectively [24]. The event horizon is located at r̂ = r+ (the largest real root

of ∆r).

In this Boyer-Lindquist frame the solution rotates asymptotically with angular velocity

Ω∞ = −a/`2. However, if we introduce the new coordinate system {t̂, r̂, θ, ϕ̂} = {t̂, r̂, θ, φ̂+
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a
`2
t̂} we get the Kerr-AdS solution written in a non-rotating frame at infinity. The horizon

angular velocity measured with respect to this non-rotating frame at infinity is

ΩH =
a

r2
+ + a2

(
1 +

r2
+

`2

)
. (2.3)

This is the angular velocity that is relevant for the thermodynamic analysis of the Kerr-AdS

black hole [12, 24–26]. Henceforth we will work in the non-rotating frame.

The rotation parameter is bounded by a < `. Solutions saturating this bound do not

describe black holes. In the limit a → ` at fixed r+, the mass and angular momentum of

the black hole diverge, and the circumference of the black hole as measured at the equator

becomes infinitely large in this limit. The temperature is given by

TH =
r+

2π

(
1 +

r2
+

`2

)
1

r2
+ + a2

− 1

4πr+

(
1−

r2
+

`2

)
. (2.4)

The Kerr-AdS black hole has a regular extremal configuration where its temperature

vanishes while the entropy remains finite. The extremality conditions TH = 0 and ∆r(r+) =

0 allow us to express a = aext and M = Mext as functions of ` and r+,

aext = r+

√
3r2

+ + `2

`2 − r2
+

, Mext =
r+

(
1 + r2

+`
−2
)2

1− r2
+`
−2

. (2.5)

At extremality, we further have ΩH = Ωext
H with

Ωext
H =

√
`4 + 2r2

+`
2 − 3r4

+

2r+`2
, and

r+

`
<

1√
3
. (2.6)

Note that only black holes with r+/` < 3−1/2 can reach zero temperature by virtue of

the constraint a < `. Some further properties of the Kerr-AdS spacetime are discussed in

appendix A of [16].

2.2 Master equation

Teukolsky investigated perturbations of the Kerr geometry [3] using the the Newman-

Penrose formalism. To be self-contained, we briefly review this formalism and Teukolsky’s

master equation in appendix A. This master equation holds for any Petrov type D back-

ground, and thus, in particular, it governs perturbations in the Kerr-AdS black hole. In

his original analysis, Teukolsky makes use of an affinely parametrized null tetrad − the

outgoing Kinnersly tetrad − that is regular in the past horizon [27]. To guarantee that the

flat limit of our calculations exactly reproduces Teukolsky’s results, we choose to work with

the natural extension of Kinnersly’s tetrad to AdS. Other choices are possible; in particular

perturbations of the Kerr-AdS geometry have previously been studied in [28, 29] using a

tetrad that is not affinely parametrized (but that suits the symmetries of the problem),

and in the rotating Boyer-Lindquist frame.
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To find the Teukolsky master equation for spin-s perturbations in the Kerr-AdS ge-

ometry we work with the Newman-Penrose (NP) null tetrad ea = {`,n,m,m} (the bar

denotes complex conjugation),

`µ∂µ =
1

∆r

((
r̂2 + a2

)
∂t̂ + ∆r∂r̂ + a

(
1 +

r̂2

`2

)
∂ϕ̂

)
,

nµ∂µ =
1

2Σ2

((
r̂2 + a2

)
∂t̂ −∆r∂r̂ + a

(
1 +

r̂2

`2

)
∂ϕ̂

)
,

mµ∂µ =
sin θ√

2
√

∆θ(r̂ + ia cos θ)

(
i a ∂t̂ +

∆θ

sin θ
∂θ +

i∆θ

sin2 θ
∂ϕ̂

)
. (2.7)

Using this null basis we can construct the NP spin coefficients, the complex Weyl scalars

and the NP directional derivative operators. A brief, but self-contained, review of the NP

formalism is given in appendix A. The Kerr-AdS black hole is a Petrov type D background

since the only non-vanishing complex Weyl scalar is Ψ2 = −M(r− ia cos θ)−3. The pertur-

bations of spin-s fields in a type D background are described by the Teukolsky decoupled

equations, namely by equations (2.12)-(2.15), (3.5)-(3.8), and (B4)-(B5) of [3]. We collect

these equations in a compact form in the pair of equations (A.3) and (A.4) of appendix A.

In the following discussion spin s = ±2,±1,±1/2,±3/2, 0 describes, respectively, gravita-

tional, electromagnetic, fermionic, and massless uncharged scalar field perturbations.

Inserting the NP quantities constructed out of the null basis (2.7) into the Teukol-

sky equations (A.3) and (A.4), we get the Teukolsky master equation for spin s =

±2,±1,±3/2,±1/2 in the Kerr-AdS background,[(
r̂2 + a2

)2
∆r̂

− a2 sin2 θ

∆θ

]
∂ 2
t̂

Ψ(s) + 2a

[(
r̂2 + a2

) (
r̂2 + `2

)
`2∆r̂

− 1

]
∂t̂∂ϕ̂Ψ(s)

+

[
a2
(
r̂2 + `2

)2
`4∆r̂

− ∆θ

sin2 θ

]
∂ 2
ϕ̂Ψ(s) −∆−sr̂ ∂r̂

(
∆s+1
r̂ ∂r̂Ψ

(s)
)

− 1

sin θ
∂θ

(
sin θ∆θ ∂θΨ

(s)
)

+ s

[
4r̂∆r̂ −

(
r̂2 + a2

)
∆′r̂

∆r̂
+ i

2aΞ cos θ

∆θ

]
∂t̂Ψ

(s)

−s
`2

[
a
(
r̂2+`2

)
∆′r̂

∆r̂
−4ar̂+i

2 `2 Ξ cos θ

sin2 θ

]
∂ϕ̂Ψ(s)+

{(
16 s8−120 s6+273 s4

) Σ2

18 `2

+s2

[
Ξ

sin2 θ
− Ξ

∆θ
−
(
277 r̂2 + 205 a2 cos2 θ

)
18 `2

]
− s

(
1 +

a2

`2
+

6r̂2

`2

)}
Ψ(s) = 4πT(s) ,

(2.8)

where we have allowed for a possible source term T(s) on the right hand side and ∆′r̂ = ∂r∆r̂.

Setting s = 0 in this master equation we get the Klein-Gordon equation for a massless

scalar field.
The relation between the master fields Ψ(s) and the perturbed Weyl scalars (that we

represent using the notation δQ) is

Ψ(2) = δΨ0 , Ψ(1) = δφ0 , Ψ( 1
2 ) = δχ0 , Ψ( 3

2 ) = δΦ0 ,

Ψ(−2) = (−Ψ2)
− 4

3 δΨ4, Ψ(−1) = (−Ψ2)
− 2

3 δφ2, Ψ(− 1
2 ) = (−Ψ2)

− 1
3 δχ1, Ψ(− 3

2 ) = (−Ψ2)
−1δΦ3.

(2.9)
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The fields δΨ0, δΨ4 and δφ0, δφ2 are the perturbations of the usual Weyl and Maxwell
scalars of the Newman-Penrose formalism (see appendix A for details), while δχ0, δχ1 are
the components of the neutrino spinor and δΦ0, δΦ3 are the components of the Rarita-
Schwinger field. Likewise the master equation source terms T(s) are defined via

T(2) = TΨ0 , T(1) =
1

2
Tφ0 , T( 1

2 ) =
1

4
Tχ0 , T(3/2) =

3

4
TΦ0 ,

T(−2) = (−Ψ2)
− 4

3 TΨ4 , T(−1) =
1

2
(−Ψ2)

− 2
3 Tφ2 , T(− 1

2 ) =
1

4
(−Ψ2)−

1
3 Tχ1 , T(−3/2) =

3

4
(−Ψ2)

−1TΦ3 ,

(2.10)

where the source terms {T0 ≡ TΨ0 , T4 ≡ TΨ4 , J0 ≡ Tφ0 , J2 ≡ Tφ2 , Tχ0 , Tχ1} can be found in

equations (2.13), (2.15), (3.6) and (3.8) of appendix B of [3].

Onwards let us restrict our attention to the AdS vacuum case where no sources are

present, T(s) ≡ 0. Introducing the separation constant Λ̂
(s)
lmω̂ and the ansatz

Ψ(s) = e−i ω̂ t̂eimϕ̂ Φ
(s)
lmω̂(r̂)S

(s)
lmω̂(θ) , (2.11)

the Teukolsky master equation separates. The radial equation is

∆−sr ∂r̂

[
∆s+1
r ∂r̂Φ

(s)
lmω̂(r̂)

]
+H(r̂) Φ

(s)
lmω̂(r̂) = 0 , (2.12)

with

H(r̂) =
K2
T − i s∆′rKT

∆r
+ 2 i sK ′T +

s+ |s|
2

∆′′r (2.13)

−|s| (|s| − 1) (2|s| − 1) (2|s| − 7)
r̂2

3`2
− |s| (|s| − 2)

(
4s2 − 12|s|+ 11

) a2

3`2
− λ̂(s)

lmω̂ ,

KT (r̂) = ω̂
(
r̂2 + a2

)
−ma

(
1 +

r̂2

`2

)
, and λ̂

(s)
lmω̂ = Λ̂

(s)
lmω̂ − 2 am ω̂ + a2ω̂2 + (s+ |s|) ,

while the angular equation reads

1

sin θ
∂θ

(
sin θ∆θ ∂θS

(s)
lmω̂(θ)

)
+

[
(a ω̂ cos θ)2 Ξ

∆θ
− 2 s a ω̂ cos θ

Ξ

∆θ
+ s+ Λ̂

(s)
lmω̂

−
(
m+ s cos θ

Ξ

∆θ

)2 ∆θ

sin2 θ
− 2δs

a2

`2
sin2 θ

]
S

(s)
lmω̂(θ) = 0 ,

(2.14)

with δs = 1 if |s| = {2, 1, 1/2, 3/2} and δs = 0 if s = 0. Note that in the limit ` →
∞, equations (2.8), (2.12) and (2.14) reduce to the standard Teukolsky equations for the

asymptotically flat Kerr background.

As usual when separating variables we are free to move a constant from the radial to

the angular equation. We tuned the constant terms in equation (2.14) such that its flat

limit precisely agrees with

1

sin θ

d

dθ

(
sin θ

d

dθ
S

(s)
lmω̂(θ)

)
+

[
(C cos θ)2−2sC cos θ+s+Λ̂

(s)
lmω̂−

(m+ s cos θ)2

sin2 θ

]
S

(s)
lmω̂(θ) = 0 ,

(2.15)
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with C = aω̂ which is the standard form of the spin-weighted spheroidal harmonic equa-

tion [30, 31]. Equation (2.14) is the natural extension of (2.15) when the cosmological

constant is switched-on. Hence its eigenfunctions can naturally be called the spin-weighted

AdS spheroidal harmonics, eimϕ̂S
(s)
lmω̂(θ), with positive integer l specifying the number of

zeros, l − max{|m|, |s|}, along the polar direction of the eigenfunction. The associated

eigenvalues Λ̂
(s)
lmω̂ can be computed numerically. They are a function of s, l,m and regular-

ity imposes the constraints that −l ≤ m ≤ l must be an integer and l ≥ |s|. To leading

order in a/` (note that a/`� 1 implies aω̂ � 1), one has Λ̂
(s)
lmω̂ = (l−s)(l+s+1)+O(a/`),

i.e. at this order the eigenvalues of (2.14) reduce to those of the well known spin-s spherical

harmonic equation.

In the flat space limit, `→∞, when the black hole is extremal and the perturbations

have a frequency that saturates the superradiant bound, i.e. ω̂ = mΩext
H , (2.12) reduces

to a hypergeometric equation and thus has an exact solution in terms of hypergeometric

functions. This was first observed in [27]. However, for non-vanishing cosmological constant

we can no longer solve the radial equation analytically even in the above particular case.

Finally, note that the radial and angular equations also describe perturbations of Kerr-de

Sitter black holes if we do the trade `2 → −`2 (see also [32]).

3 Master equation for perturbations of NHEK-AdS

In this section, we first briefly discuss some properties of the NHEK-AdS geometry. Then

we obtain the associated master equation which governs its perturbations and separate it

into a radial and an angular part. In the flat limit ` → ∞ all our results agree with their

counterparts of the NHEK geometry [6].

3.1 Properties of the spacetime

The Kerr-AdS black hole has an extreme regular configuration where its temperature van-

ishes but the entropy remains finite. We can then take the near-horizon limit of this extreme

Kerr-AdS black hole, and get the Kerr-AdS near-horizon geometry (NHEK-AdS), as done

in [14]. This limit is reviewed in appendix B: we start with the coordinates {t̂, r̂, θ, φ̂}
of (2.1) and we end up with the near-horizon coordinates {t, r, θ, φ}. The NHEK-AdS

gravitational field then reads [14]

ds2 =
Σ2

+

V

[
−
(
1 + r2

)
dt2 +

dr2

1 + r2
+
V dθ2

∆θ

]
+

sin2 θ∆θ

Σ2
+

(r2
+ + a2)2

Ξ2

(
dφ+

2a r+Ξ

V (r2
+ + a2)

rdt

)2

,

(3.1)

with ∆θ(θ) and Ξ defined in (2.2), and

Σ2
+ =r2

+ + a2 cos2 θ , V =
1 + 6r2

+`
−2 − 3r4

+`
−4

1− r2
+`
−2

, (3.2)

and it obeys Rµν = −3`−2gµν . The rotation parameter a is constrained to obey a < ` and

the extremality condition (2.6), i.e.

a = r+

√
3r2

+ + `2

`2 − r2
+

and a < ` ⇒ r+

`
<

1√
3
. (3.3)
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Onwards, although we will keep the parameter a in our results for the benefit of compact-

ness, the reader should keep in mind that it is not an independent parameter and that the

constraint (3.3) is implicit.

NHEK-AdS has the property that surfaces of constant θ are warped AdS3 geometries,

i.e. a circle fibred over AdS2 with warping parameter proportional to gφφ. The isometry

group is SL(2, R) × U(1). Quite importantly, NHEK-AdS is a non-globally hyperbolic

spacetime, having timelike infinities both at r = −∞ and r = +∞. It also has an ergoregion

(where the Killing field ∂/∂t is spacelike) which extends to r = ±∞.

3.2 Master equation

We are interested in linear perturbations of the NHEK-AdS geometry. To obtain the

associated Teukolsky master equation for spin-s perturbations, we work with the Newman-

Penrose null tetrad basis

`µ∂µ =
V

1 + r2

(
∂t +

(
1 + r2

)
∂r −

2arr+Ξ(
r2

+ + a2
)
V
∂φ

)
,

nµ∂µ =
1

2Σ2
+

(
∂t −

(
1 + r2

)
∂r −

2arr+Ξ(
r2

+ + a2
)
V
∂φ

)
,

mµ∂µ =

√
∆θ√

2 (r+ + ia cos θ)

(
∂θ + i

Ξ Σ2
+(

r2
+ + a2

)
sin θ∆θ

∂φ

)
. (3.4)

The NP spin coefficients can be obtained from this tetrad and (A.1). The non-vanishing

ones are

α =−
r+ cos θ

(
`2 + a2

(
1− 2 cos2 θ

))
− ia

(
`2
(
2− cos2 θ

)
− a2 cos2 θ

)
2
√

2 `2 (r+− ia cos θ)2 sin θ
√

∆θ

, γ =
r

2Σ2
+

,

β =
cos θ

(
`2 + a2(1− 2 cos2 θ)

)
2
√

2 `2 (r++ ia cos θ) sin θ
√

∆θ

, π =
i a sin θ

√
∆θ√

2 (r+− ia cos θ)2 , τ = − i a sin θ
√

∆θ√
2Σ2

+

.

(3.5)

NHEK-AdS is a Petrov type D geometry since the only non-vanishing complex Weyl

scalar is

Ψ2 = −
(a2 + r2

+)2

r+(a2 + 3r2
+)(r+ − ia cos θ)3

. (3.6)

Inserting the NP spin coefficients (3.5) and the directional derivatives associated with

the basis (3.4) into the Teukolsky equations (A.3) and (A.4), we get the Teukolsky master
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equation for spin s = ±2,±1,±3/2,±1/2 in the NHEK-AdS background,

V

1 + r2
∂ 2
t Ψ(s) − 4a r r+ Ξ

(1 + r2)
(
r2

+ + a2
) ∂t∂φΨ(s) +

Ξ2(
r2

+ + a2
)2
[

4a2r2r2
+

V (1 + r2)

−
Σ 4

+

∆θ sin2 θ

]
∂ 2
φΨ(s) − V

(
1 + r2

)−s
∂r

[(
1 + r2

)s+1
∂rΨ

(s)
]

− 1

sin θ
∂θ

(
sin θ∆θ ∂θΨ

(s)
)
− 2s

V r

1 + r2
∂tΨ

(s) − 2s
Ξ

r2
+ + a2

[
2a r+

1 + r2

+i cos θ

(
a2
(
r2

+ + `2
)

`2∆θ
+
r2

+ + a2

sin2 θ

)]
∂φΨ(s) +

{(
16 s8 − 120 s6 + 273 s4

) Σ 2
+

18`2

+s2

[
Ξ

sin2 θ
− Ξ

∆θ
−
(
277 r2

+ + 205 a2 cos2 θ
)

18`2

]
− sV

}
Ψ(s) = 4πT(s) .

(3.7)

The relation between the master fields Ψ(s) and the perturbed Weyl scalars is given by (2.9),

with the background Ψ2 defined in (3.6), and the master source terms T(s) are defined

via (2.10). Setting s = 0 in this master equation we get the Klein-Gordon equation for a

massless scalar field in the NHEK-AdS geometry.

To solve the above master equation we introduce the separation constant Λ
(s)
lm, and

make the separation ansatz

Ψ(s) = e−iωteimφ
(
1 + r2

)−s/2
Φ

(s)
lmω(r)S

(s)
lm (θ) . (3.8)

The resulting angular equation is (with a given by (3.3))

1

sin θ
∂θ

(
sin θ∆θ∂θ S

(s)
lm (θ)

)
+

[
−
(
16 s8 − 120 s6 + 273 s4

) Σ 2
+

18`2

+s2

(
−a

2 cos2 θΞ

`2∆θ
− Ξ

sin2 θ
+

Ξ

∆θ
+

(
277 r2

+ + 205 a2 cos2 θ
)

18`2

)
−m (m+ 2s cos θ) Ξ

sin2 θ
+

16m2a4

`2
(
r2

+ − a2
) +

16m2a6
(
a2 + 7r2

+

)
V `4

(
r2

+ − a2
)2

+
Ξ

`2∆θ

(
2amr2

+(
r2

+−a2
)+s a cos θ

)2

+V

(
a2m2(
r2

+−a2
) + s− 7m2

4
+ Λ

(s)
lm︸ ︷︷ ︸

−s2+Λ̃
(s)
lm

)]
S

(s)
lm (θ) = 0 . (3.9)

while the radial equation for Φ
(s)
lmω(r) reads

d

dr

[(
1 + r2

) d
dr

Φ
(s)
lmω(r)

]
−
[
µ2 − (ω + qr)2

1 + r2

]
Φ

(s)
lmω(r) = 0 , (3.10)

where

µ2 = q2 + s2 + s− 7m2

4
+ Λ

(s)
lm ≡ q

2 + Λ̃
(s)
lm , q =

2amr+Ξ(
r2

+ + a2
)
V
− i s . (3.11)
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We have introduced the shifted eigenvalues Λ̃
(s)
lm which have the advantage of having the

symmetry Λ̃
(s)
lm = Λ̃

(−s)
lm (since Λ

(−s)
lm = Λ

(s)
lm + 2s) that will be useful later. This follows

from the property S
(s)
lm (π − θ) = S

(s)
lm (θ). Moreover, when ` → ∞ one has q → m − i s, in

agreement with the asymptotically flat limit result [6].

An interesting observation, first made in the NHEK case [6], that also holds in NHEK-

AdS, is that the radial equation (3.10) is exactly the equation for a scalar field of mass µ

and charge q, (
D2 + µ2

)
Φ = 0 , Dµ = ∇µ − iqAµ , (3.12)

in AdS2 space with curvature radius `AdS2 = 1 and with an electric field,

ds2 =
(
1 + r2

)
dt2 − 1

(1 + r2)
dr2 , A = rdt . (3.13)

Indeed, if we introduce the separation ansatz Φ(r, t) = e−i ω tΦ
(s)
lmω(r) into (3.12), the Klein-

Gordon equation exactly reproduces equation (3.10). Therefore a general spin-s pertur-

bation with angular momentum m in NHEK-AdS obeys the wave equation for a massive

charged scalar field in AdS2 with a homogeneous electric field. Interestingly, the charge q

and squared mass µ2 are complex, although µ2−q2 is real. A massive charge scalar field in

AdS2 with homogeneous electric field was first studied in ref. [33], and our radial solutions

will necessarily reproduce those found in [33].

An intriguing property of the angular equation (3.9) is that it does not depend on

the frequency of the perturbation, contrary to what happens in the Kerr-AdS angular

equation (2.14). This property is best understood if we analyze what happens to the

perturbation frequency in the near-horizon limit procedure. For simplicity consider the

near-horizon transformation, reviewed in appendix B, that takes the Kerr-AdS geometry in

the frame {t̂, r̂, θ, ϕ̂} into NHEK-AdS in Poincaré coordinates {t′, r′, θ, φ′} written in (B.4).

In this process a Kerr-AdS mode with frequency ω̂ and azimuthal quantum number m

transforms as

eim ϕ̂−i ω̂ t̂ → e
imφ′−i 1

λ

r2++a2

V r+
(ω̂−mΩext

H )t′ ≡ eimφ′−iω′t′ , (3.14)

that is, the Kerr-AdS frequency ω̂ is related to the NHEK-AdS frequency ω′ by

r2
+ + a2

V r+

(
ω̂ −mΩext

H

)
= lim

λ→0
λω′ , (3.15)

where λ→ 0 is the quantity that zooms the near-horizon region of the original black hole

(see appendix B). We conclude that all finite frequencies ω′ in the NHEK-AdS throat

correspond to the single frequency ω̂ = mΩext
H in the extreme Kerr-AdS black hole (this

property was first observed by [4] in the Kerr case). Moreover, the frequency ω̂ = mΩext
H

is exactly the one that saturates the superradiant bound of extreme Kerr-AdS.

4 Solution of the radial and angular equations in NHEK-AdS

In this section we find the solutions of the radial equation (3.10) and of the angular equa-

tion (3.9). The radial equation can be solved exactly in terms of hypergeometric functions.
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The angular equation can be solved numerically with very high accuracy. Since it is in-

dependent of the frequency, we can solve it independently of the radial equation solution.

Once its eigenvalues are found we insert them in the radial solution to study the physical

properties of the system. In the flat limit `→∞ our results reduce to those found in the

analysis of NHEK [6].

4.1 Solution of the radial equation

In this subsection, we will find that the radial equation in NHEK-AdS can be solved exactly.

This is a remarkable feature of perturbations in NHEK-AdS.

The radial equation (3.10) is an ODE with no singular points and three regular singular

points at ±i and ∞. Therefore it can be transformed into the hypergeometric equation.

Introducing φ
(s)
lmω(z) = zα̃ (1− z)β̃ F (z) , with z = 1

2 (1− ir) , the radial equation (3.10)

exactly agrees with the hypergeometric equation

z (1− z) ∂2
zF (z) +

[
c̃−

(
ã+ b̃+ 1

)
z
]
∂zF (z)− ãb̃F (z) = 0 , (4.1)

with the identifications

α̃ =1
2 (ω − iq) , β̃ =1

2 (ω + iq) , η2 =1 + 4
(
µ2 − q2

)
,

ã =1
2 (1 + η + 2ω) , b̃ =1

2 (1− η + 2ω) , c̃ =1 + ω − iq . (4.2)

As (4.1) is symmetric under the interchange of ã and b̃, which differ merely by ±η , we can,

without loss of generality, demand η ≥ 0 , with

η ≡
√

1 + 4 (µ2 − q2) =

√
1 + 4Λ̃

(s)
lm . (4.3)

It follows from the discussion below (3.11) that η(−s) = η(s). Given that none of the

numbers c̃, (c̃− ã− b̃), (ã− b̃) is equal to an integer [34] the most general solution of (3.10),

in the neighbourhood of the regular singular point z = 0, reads

φ
(s)
lmω(z) = A0 z

α̃ (1− z)β̃ F (ã, b̃, c̃, z)+B0 z
α̃−c̃+1 (1− z)β̃ F (ã−c̃+1, b̃−c̃+1, 2−c̃, z) . (4.4)

A0, B0 are constant amplitudes to be determined by boundary conditions. To render the

function φ
(s)
lmω(z) single valued we choose the branch cuts [−∞, 0] and [1,+∞] , which

corresponds to | arg(z)| < π and | arg(1− z)| < π . Note that the above solution is regular

for all finite values of r.

To further discuss the properties of the radial solution (and hence the physical proper-

ties of the perturbations) we first need to solve the angular equation to find its eingenvalues

and thus determine η. We do this in the next subsection. Later, in section 5 we will return

to (4.4) and analyze its properties.

4.2 Solution of the angular equation

To fully specify the radial solution (4.4) we still need to determine the allowed values of the

angular eigenvalues Λ̃lm defined in (3.11). As will be shown in the next section, η2 governs
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the behaviour of the solutions at infinity and its determination is therefore fundamental.

We will therefore present our results for η2; Λ̃lm can then be read from (4.3).

The value of Λ̃lm, and thereby η, depends on four dimensionless parameters: the

quantum numbers s, l, m, which label the spin, the total angular momentum and its

projection, and on the ratio r+/` . The latter quantity retains the memory of the horizon

size in AdS units of the extreme Kerr-AdS whose near-horizon geometry is described by

NHEK-AdS.

Recall also that a/` is fixed by the constraint (3.3). As mentioned before, the quantum

numbers s, l, m are integers constrained to satisfy the regularity conditions −l ≤ m ≤
l and l ≥ |s|, and the number of zeros of a specific eigenfunction S

(s)
lm (θ) is given by

l −max {|m|, |s|}.
We use spectral methods to solve the angular equation numerically. In contrast to finite

difference and finite element methods, which use local trial functions, spectral methods use

global trial functions. For analytical functions, spectral methods have exponential conver-

gence properties. In a first step we employ the Frobenius method to map equation (3.9),

which has regular singular points at θ = ±π
2 , into a differential equation without sin-

gular points plus a set of boundary conditions at θ = ±π
2 . We then use a Chebyshev

grid discretization. The problem boils down to a generalized eigenvalue equation for Λ̃lm.

This eigenvalue problem can readily be solved in Mathematica. As our focus lies on grav-

itational perturbations, all numerical calculations are performed for |s| = 2 (recall that

η(−s) = η(s); in addition the eigenvalues are symmetric under the interchange m↔ −m).

We have computed η2 as a function of m and of r+/` for 2 ≤ l ≤ 30.3 Figures 1 and 2

are two representative examples of our results: figure 1 is for l = 3 while figure 2 is for

l = 16. In these figures the left panel gives η2 as a function of r+/` for several fixed values

of m. On the other hand, the right panel displays η2 as a function of m for two different

radii, namely r+/` = 0 (the flat limit) and r+/` = 0.55 . 1/
√

3 (recall that, as discussed

in (3.3), the metric is no longer well behaved for r+/` = 1/
√

3). Finally, in the right panel

of figure 3 we complete the information that is missing in figure 2 with a 3-dimensional

plot that shows η2 as a function of −l ≤ m ≤ l and of r+/` , for l = 16. For completeness,

in the left panel we also show the equivalent plot for l = 3. To understand the color code

employed in these plots we anticipate some relevant information that will be discussed in

detail in the next section. We will find that η2 > 0 (red points in the 3-dimensional plots)

corresponds to normal modes which decay at infinity, whereas η2 < 0 (blue points in the

3-dimensional plots) describes traveling waves which oscillate at infinity. Moreover, we will

find a special sector of modes for which we cannot impose outgoing boundary conditions.

These modes are identified by green dots in our plots.

These plots have some interesting properties. To start with, the points in the r+/` = 0

plane describe the asymptotically flat limit, `→∞. An important check of our numerical

code, is that our calculations exactly reproduce the results presented in [6] for the NHEK

geometry. Note that in this case, η2 can be positive (this happens for small values of m) or

3The dimensionless horizon radius r+/` is a continuous parameter; we choose a step size of 0.01 in the

presentation of our results.
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Figure 1. η2, defined in (4.3), for |s| = 2 and l = 3. a) η2 vs r+/` for |m| = 0, 1, 2, 3, and b) η2 vs

m for r+/` = 0 (black points) and r+/` = 0.55 ' 1/
√

3 (red points).

Figure 2. η2 for |s| = 2 and l = 16. a) η2 vs r+/` for the representative |m| cases (from

top to bottom these are |m| = 0, 10, 12, 13, 16), and b) η2 vs m for r+/` = 0 (black points) and
r+/` = 0.55 ' 1/

√
3 (red points).

negative (for larger values of m). A similar situation holds when r+/` is non-vanishing but

not too large (see further discussion below). Again, the sign of η2 will play an important

role in the physical interpretation of the perturbations done in the next section.

Next, fix l and m and follow the evolution of η2 as r+/` grows from zero to its upper

bound sup{r+/`} = 1/
√

3. In this path, if η2 starts positive, it remains positive. This is

the typical “small” m behaviour. In particular, η2 is always positive for m = 0 modes that

are relevant for the conjecture [15] discussed in the introduction. On the other hand, if η2

starts negative at r+/` = 0, it does change sign at some intermediate r+/` before reaching
r+/` → 1/

√
3 . Typically this happens for “large” values of m . l and as we approach the

upper bound the modes with |m| = l are the last to change sign. Given an l there is a

critical dimensionless radius r+/` = (r+/`)c < 1/
√

3 above which η2 is always positive for any

|m| ≤ l. (In the next section we will find that as a consequence there are no traveling waves

for (r+/`)c < r+/` < 1/
√

3). This threshold is not universal, it depends on the quantum

number l. The evolution of this critical value (r+/`)c as a function of the quantum number

l for l ≤ 16 is illustrated in figure 4. This value (r+/`)c grows monotonically approaching
1/
√

3 (where the metric is no longer well-behaved) as l grows. For higher l, (r+/`)c is closer

to the singular value 1/
√

3 and the numerical results become less accurate.
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Figure 3. η2 as a function of −l ≤ m ≤ l and r+/` , for l = 3 (left) and l = 16 (right). The

red points (curve segments) have η2 > 0 while the blue points (curve segments) have η2 < 0. In

section 5 we will conclude that the red dots describe normal modes (η ∈ R), while blue dots describe

traveling waves (η ∈ I). The green dots correspond to modes on which we cannot impose outgoing

boundary conditions.

Figure 4. Critical value (r+/`)c for l ≤ 16. In section 5 we conclude that no traveling waves exist

for (r+/`)c < r+/` < sup{r+/`}.

5 Analysis of the solutions. Stability and Kerr/CFT discussions

At this stage we have found the eigenvalues of the angular equation for perturbations in

NHEK-AdS, which can be plugged in the exact radial solution (4.4). This radial solution

depends on only one undetermined parameter, namely the frequency of the perturbation.

It might be constrained by the asymptotic boundary conditions. In subsection 5.1 we

select a sector of boundary conditions and search (unsuccessfully) for linear unstable modes
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of NHEK-AdS. In particular, we do not find any axisymmetric instability, which is in

agreement with a recent conjecture [15] (see introduction) relating the stability properties

of the full geometry to those of its near-horizon geometry. In subsection 5.2, we find that

the asymptotic behaviour of the metric perturbations in NHEK-AdS violates the fall-off

conditions imposed in the formulation of the Kerr/CFT correspondence (the only exception

being the axisymmetric sector of perturbations).

5.1 Boundary conditions. Search for unstable modes of NHEK-AdS

NHEK-AdS has timelike asymptotic boundaries at r = ±∞ and, having the exact analytical

solution (4.4) for the radial perturbation φ
(s)
lmω, we can find its asymptotic behavior. We

use standard properties of the hypergeometric functions [34] to map the regular singular

point z = 0 onto the regular singular point z = 1. We further employ the series expansion

of the hypergeometric function and of the exponential function. The desired asymptotic

behaviour, to next-to-leading order, is

lim
r→±∞

φ
(s)
lmω(r) ∼ 2

1+η
2 Γ(b̃− ã)C±e±iπ(β̃−α̃−ã)e−

1+η
2

ln |r|e
− 2qω

1+η
1
r

+ 2
1−η

2 Γ(ã− b̃)D±e±iπ(β̃−α̃−b̃)e−
1−η

2
ln |r|e

− 2qω
1−η

1
r ,

(5.1)

where

C± =A0
Γ(c̃)

Γ(b̃)Γ(c̃− ã)
−B0 e

±iπc̃ Γ(2− c̃)
Γ(b̃− c̃+ 1)Γ(1− ã)

,

D± =A0
Γ(c̃)

Γ(ã)Γ(c̃− b̃)
−B0 e

±iπc̃ Γ(2− c̃)
Γ(ã− c̃+ 1)Γ(1− b̃)

. (5.2)

It follows from (4.3) and the analysis of section 4.2 that, depending on the value of Λ̃
(s)
lm , η

can be either real or imaginary. The boundary condition discussion now depends on each

of these two families of modes we look at.

5.1.1 Normal modes

For η ∈ R we demand the solution to be normalizable (i.e. that the mode has finite energy),

which means D± must vanish in (5.1). This gives a pair of conditions for the amplitudes

A0, B0 in the radial solution (4.4). Non-trivial solutions exist when the determinant of this

system of equations vanishes, i.e.4

det =
(1− c̃)

Γ(ã)Γ(c̃− b̃)Γ(ã− c̃+ 1)Γ(1− b̃)
= 0 . (5.3)

Neither (c̃ − b̃) nor (ã − c̃ + 1) depends on ω, so this condition can be obeyed only if we

use the property Γ(−n) =∞, n ∈ N0 to get the following frequency quantization,

ã =−n ⇒ ω = −
(
n+ 1

2 + η
2

)
, n ∈ N0 ; B0 = 0

(1− b̃) =−n ⇒ ω = n+ 1
2 + η

2 , n ∈ N0 ; A0 = 0

}
→ ω = ±

(
n+

1

2
+
η

2

)
, n ∈ N0 ,

(5.4)

4To get the quantization conditions of this section, we use the Gamma function property Γ(z)Γ(1− z) =

π/ sin(πz).
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where the last expression compiles the normal mode spectrum that arises from the two

possible cases. When ` → ∞ this spectrum agrees with the normal modes results of [6]

and, in agreement with the discussion above, it is precisely the spectrum of normal modes

found for a massive charged scalar in AdS2 with a homogeneous electric field in ref. [33].

In the above analysis we must distinguish the positive and negative frequency cases

because the Teukolsky equations for s 6= 0 are not invariant under complex conjugation.

Therefore negative frequency solutions cannot simply be obtained from positive ones. They

have to be considered separately and the two signs correspond to different helicities of the

field [6].

Naively c̃ = 1 would also satisfy the quantization condition (5.3). Yet, as mentioned

above, the function (4.4) no longer solves the radial equation if c is an integer. When

repeating the analysis with the appropriate regular solution [34], we found that the special

case c̃ = 1 has no physical relevance.

5.1.2 Traveling waves

For η = iη̃ ∈ I, the solution describes traveling waves. Indeed, in this case the radial func-

tion oscillates at infinity and thus we can have incoming or outgoing waves. As discussed

in association with figure 3, for a given l there are no traveling waves when r+/` > (r+/`)c,

but in the complementary regime (which includes the flat limit case `→∞) they do exist.

We are interested in studying the stability of the NHEK-AdS geometry against small

perturbations but, in general, not in scattering experiments. Therefore, at each of the

two asymptotic boundaries of our spacetime, we will require that we have only outgoing

waves. There exist two different notions of “outgoing” depending on whether we discuss

the phase or the group velocity, and these need not have the same sign. The latter governs

the transmission speed of information and thus it is the physically relevant velocity. On

the other hand, the phase velocity dictates the direction of the energy flux (i.e. for ω > 0

the energy flux has the same sign as the phase velocity). Since our modes have time-

dependence of the form e−i ω t, a solution with positive frequency imaginary part has an

amplitude that grows in time − it describes an instability − while a solution with negative

imaginary part for the frequency is damped in time − it is a quasinormal mode.

To determine the group and phase velocity, revisit equation (5.1) and define

SC/D = i

[
∓ η̃

2
ln |r|+ 2ω (±q0 η̃ + s)

1 + η̃2

1

r

]
, q0 ≡ Re(q) =

2amr+Ξ

V
(
r2

+ + a2
) . (5.5)

Here (and in the expressions below for v
C/D
ph and v

C/D
gr ) the superscript C/D refers to the

upper/lower sign in the r.h.s. of the respective expression. Moreover, the subscripts in C±

and D± defined in (5.1) (and used in table 1) are associated with r → ±∞. With the

definition (5.5), eS
C/D

describes the radial contribution to the wave propagation in the

context of a WKB (Wentzel-Krames-Brillouin) approximation analysis. Introducing the

WKB effective wave number kC/D(r) = −i ∂rSC/D , the phase and group velocity are then,
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C+ D+ C− D−

vph
Re(ω) > 0 − + + −
Re(ω) < 0 + − − +

vgr
q0η̃ ∓ s > 0 − + − +

q0η̃ ∓ s < 0 + − + −
q0η̃ + s > 0 , q0η̃ − s < 0 − − − −
q0η̃ + s < 0 , q0η̃ − s > 0 + + + +

Table 1. Signs of the amplitudes C± and D± introduced in (5.1). They are needed to determined

the signs of the phase and group velocity (see discussion in the text).

respectively, given by

v
C/D
ph =

ω

kC/D
∼ ∓2ω

η̃
r , v

C/D
gr =

(
dkC/D

dω

)−1

∼ ∓ 1

2

(
1 + η̃2

)
(q0 η̃ ± s)

r2 . (5.6)

At r = ±∞, depending on which subset of the amplitudes {C±, D±} we set to zero, we

can have the combinations for the sign of the phase and group velocities displayed in

table 1. Again, we will consider only cases describing outgoing boundary conditions at

both boundaries of NHEK-AdS. Modes described by the two last rows of table 1 cannot

obey such boundary conditions. These are the modes identified with the green color in

the eigenvalue plots shown in figures 1–3 of section 4.2.

Consider first the case where we look into boundary conditions where only outgoing

phase velocity is allowed at both boundaries r → ±∞. Bardeen and Horowitz identified

this type of boundary condition as a case where there is room for a possible instability −
the ergoregion instability [35] − in near-horizon geometries since these are horizonless but

have an ergoregion. In the flat case, [6] found however that no such instability is present

in NHEK. Here we will conclude that a similar result holds for NHEK-AdS. We have to

initially distinguish the positivity of the real part of the frequency, Re(ω). For Re(ω) > 0,

from table 1 we conclude that outgoing phase velocity at r → ±∞ requires C± = 0. For

Re(ω) < 0 we have instead to set D± = 0 . The requirement C± = 0 boils down to the

condition
(1− c̃)

Γ(b̃)Γ(c̃− ã)Γ(b̃− c̃+ 1)Γ(1− ã)
= 0 , (5.7)

which is identical to (5.3), up to the interchange ã ↔ b̃. So the quantization proceeds

analogously to the treatment of the normal modes. Note that b̃ = −n is in conflict with

Re(ω) > 0 , and therefore the only solution is (1− ã) = −n ⇒ ω = n + 1
2 − i

η̃
2 , n ∈ N0.

For Re(ω) < 0 , the requirement D± = 0 can again be treated analogously to the case

of the normal modes. We find that a possible solution (1 − b̃) = −n for non-negative

n is not compatible with Re(ω) < 0, and thus the only solution is ã = −n ⇒ ω =

−
(
n+ 1

2

)
− i η̃2 , n ∈ N0. We can summarize the two frequency quantizations in the single

result,

ω = n+
1

2
− i η̃

2
, n ∈ Z . (5.8)
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These are quasinormal modes of NHEK-AdS since the imaginary part of the frequency

spectrum is negative. To interpret this result recall the argument of Bardeen-Horowitz

for the possible existence of an instability in this sector of perturbations. We required

only outgoing phase so our perturbations (for positive frequency modes) have necessarily

outgoing energy flux at infinity. But NHEK-AdS has an ergoregion where negative energy

states are allowed, and thus where the Penrose process and superradiant emission can occur.

So if we start with some localized initial data with negative energy and if a perturbation

removes energy from such a system, the energy at the ergoregion core could grow negatively

large and lead to an instability [35]. However, we have found that outgoing phase always

leads to stable quasinormal modes rather than an instability, like in the flat limit of our

analysis. The reason for the absence of the instability was identified in the NHEK case in [6],

and also holds when the cosmological constant is present. Take the Re(ω) > 0, q0 η̃∓s > 0

case for concreteness (the description for the other cases is similar). Imposing C+ = 0

means that at r → ∞ both the phase and group velocities have the same sign. On the

other hand, the condition C− = 0 means that at r → −∞ we have outgoing phase but the

group velocity is ingoing: we have energy flux leaving the spacetime through this boundary

but this corresponds to the physical propagation of an a incoming wave. Thus, we have

a very fine-tuned (and in this sense unphysical) experiment: we prepare our initial data

to be such that an initial wavepacket (at finite r in the the bulk of the geometry) does

not propagate to r = −∞ by sending in an appropriate (finely tuned) wavepacket from

r = −∞ to scatter with it in such a way as to produce only a wavepacket propagating

to r = +∞.5 This fine-tuning is probably the reason that we do not see an instability in

NHEK [6] or in NHEK-AdS.

Consider now the physical case where we impose outgoing group velocity boundary

conditions at both boundaries. From table 1, these boundary conditions require either

C+ = D− = 0, if q0 η̃ ∓ s > 0, or C− = D+ = 0, if q0 η̃ ∓ s < 0 (note that the cases

described in the two last rows of table 1 can never describe a system with outgoing group

velocity at both boundaries). This pair of conditions translates, respectively, into the

quantization conditions

sin(πb̃) sin
[
π(c̃− ã)

]
e−iπc̃ = sin(πã) sin

[
π(c̃− b̃)

]
eiπc̃ ,

sin(πã) sin
[
π(c̃− b̃)

]
e−iπc̃ = sin(πb̃) sin

[
π(c̃− ã)

]
eiπc̃ , (5.9)

which can be solved with the help of Mathematica. The solutions of these two cases combine

to give the single frequency quantization

ω = n+
1

2
− i

2π
ln

[
cosh [π (η̃/2 + |q0|)]
cosh [π (η̃/2− |q0|)]

]
, n ∈ Z , (5.10)

where we have restricted our analysis to the most relevant spins |s| = 0, 2 . As Im(ω) < 0

these solutions are damped, i.e. these are quasinormal modes of NHEK-AdS.

5The analogous situation in a Kerr black hole would be boundary conditions where one manipulates the

initial data to be such that no waves cross the future horizon by sending in appropriate and finely tuned

waves from the past horizon.
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To sum up this subsection 5.1, in a linear mode search for instabilities in NHEK-

AdS that have outgoing boundary conditions, we do not find any sign of unstable modes.

(However, we cannot rule out the possibility that a different set of boundary conditions

might lead to an instability). This applies both to normal waves and traveling modes and

both to non-axisymmetric and axisymmetric modes. As discussed in the Introduction, the

fact that we do not find an axisymmetric instability in NHEK-AdS is in agreement with

the conjecture proposed in [15], and here verified for the Kerr-AdS system. Recall that the

modes relevant for this conjecture are the normal modes (η2 > 0) with m = 0.

5.2 Hertz map for metric perturbations. Implications for the Kerr/CFT cor-

respondence

Many physically interesting quantities can be directly computed from the gauge invariant

Weyl scalars of the Newman-Penrose formalism. Yet, for some problems, it is essential to

know the linear perturbation hµν of the metric itself. The Hertz map, hµν = hµν(ΨH),

reconstructs the perturbations of the metric tensor (or of the electromagnetic vector po-

tential) from the associated scalar Hertz potentials ΨH (in a given gauge). These are

themselves closely related to the Weyl scalar perturbations discussed in the previous sec-

tions. The Hertz map construction studies have been pioneered by Cohen, Kegeles and

Chrzanowski [36–38] and were further explored by Stewart [39]. Wald [40] revisited the

problem and provided an elegant and straightforward proof of the relation between the

perturbation equations for the Weyl scalars and the corresponding Hertz potentials. A

brief but complete review of the subject can be found in an appendix of [6]. Here we apply

this Hertz map to our problem.

For vacuum type D spacetimes, the Hertz potential itself satisfies a master equation,

which is also the basis for its definition. More specifically, the Hertz potentials obey the

second order differential equations (s± = ±1
2 , ±

3
2 , ±1, ±2)

{[
∆−

(
2s−+ 1

)
γ − γ̄ + µ̄

] (
D − 2s−ε−

(
2s−+ 1

)
ρ
)
−
[
δ̄ − τ̄ + β̄ −

(
2s−+ 1

)
α
]

×
(
δ −

(
2s−+ 1

)
τ − 2s−β

)
+

1

3
s−
(
s−+

1

2

)(
s−+ 1

) (
2s−+ 7

)
Ψ2

}
ψ

(s−)
H = 0 ,

(5.11a){[
D −

(
2s+− 1

)
ε+ ε̄− ρ̄

] (
∆−

(
2s+− 1

)
µ− 2s+γ

)
−
[
δ + π̄ − ᾱ−

(
2s+− 1

)
β
]

×
(
δ̄ −

(
2s+− 1

)
π − 2s+α

)
+

1

3
s+

(
s+− 1

2

)(
s+− 1

) (
2s+− 7

)
Ψ2

}
ψ

(s+)
H = 0 .

(5.11b)

In the special case of the NHEK-AdS (or the Kerr-AdS) geometry, the Hertz potential obeys

the same master equation as its conjugated Teukolsky field but with spin sign traded.6 That

6A comparison between the conjugate relations (2.9)–(2.11) and (5.12) clarifies this statement.

– 21 –



J
H
E
P
1
0
(
2
0
1
2
)
1
8
2

is, if we replace

ψ
(s)
H =

{
e−iωteimφ

(
1 + r2

)−s/2
Φ

(s)
lmω(r)S

(s)
lm (θ) , s ≤ 0 ,

e−iωteimφ
(
1 + r2

)−s/2
Φ

(s)
lmω(r)S

(s)
lm (θ) (−Ψ2)−

2s
3 , s ≥ 0 ,

(5.12)

into (5.11) we find that Φ
(s)
lmω(r) and S

(s)
lm (θ) are exactly the solutions of the radial equa-

tion (3.10) and of the angular equation (3.9), respectively.

Onwards we are interested only in spin s = ±2 perturbations and thus we restrict our

analysis to the gravitational Hertz map. The Hertz potentials ψ
(−2)
H and ψ

(2)
H contain the

same physical information. Through the Hertz map they generate the metric perturbations

in two different gauges, namely the ingoing (IRG) and the outgoing (ORG) radiation gauge,

defined by

IRG : `µhµν = 0, gµνhµν = 0 , ORG : nµhµν = 0, gµνhµν = 0 . (5.13)

For a detailed discussion of the definition and existence of radiation gauges in Petrov type

II and D spacetimes see [41]. The resulting linear perturbations of the metric are given by7

hIRG
µν =

{
`(µmν)

[
(D+3ε+ε̄−ρ+ρ̄) (δ+4β+3τ)+(δ+3β−ᾱ−τ−π̄) (D+4ε+3ρ)

]
−`µ`ν (δ+3β+ᾱ−τ) (δ+4β+3τ)−mµmν (D+3ε−ε̄−ρ) (D+4ε+3ρ)

}
ψ

(−2)
H

+c.c. , (5.14)

hORG
µν =

{
n(νm̄µ)

[(
δ̄+β̄−3α+τ̄+π

)
(∆−4γ−3µ)+(∆−3γ−γ̄+µ−µ̄)

(
δ̄−4α−3π

)]
−nµnν

(
δ̄−β̄−3α+π

) (
δ̄−4α−3π

)
−m̄µm̄ν (∆−3γ+γ̄+µ) (∆−4γ−3µ)

}
ψ

(2)
H

+c.c. . (5.15)

We have explicitly checked that (5.14) and (5.15) satisfy the linearized Einstein equations

for traceless perturbations [6] (see also footnote 7).

In the context of the Kerr/CFT proposal, we are now interested in the asymptotic

fall-off of the metric perturbation in NHEK-AdS. This can be obtained using the Hertz

map (5.14) and (5.15), and the asymptotic expansion (5.1) for the radial function Φ
(s)
lmω.

Here one has to be cautious with a possible regularity issue: the basis vector fields ` and

n are globally well-defined, but the vector field m is singular at θ = 0, π. However, this is

harmless since the angular dependence of the Hertz potential has a sufficiently high power

of sin θ to ensure smoothness of hµν at θ = 0, π. We find that the asymptotic result is

independent of whether we work in the ingoing or outgoing radiation gauge. The explicit

asymptotic behaviour of the metric perturbation is

hGRµν ∼ r
3
2
± η

2



O (1) O
(

1
r2

)
O
(

1
r

)
O
(

1
r

)
O
(

1
r4

)
O
(

1
r3

)
O
(

1
r3

)
O
(

1
r2

)
O
(

1
r2

)
O
(

1
r2

)


, (5.16)

7Note that (5.15), whose explicit derivation can be found in an appendix of [6], corrects some typos in

the map first presented in [38].
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where the rows and columns follow the sequence {t, r, θ, φ}. At this point we have not yet

imposed any boundary conditions, and recall that η is the quantity related to the AdS

spheroidal harmonic eigenvalue defined in (4.3).

We now want to compare the above asymptotic behaviour of the metric perturbations

with the Kerr/CFT fall-off conditions. Contrary to (5.16), where η in the power of r

depends on the cosmological background, the Kerr/CFT fall-off conditions are the same

for NHEK and NHEK-AdS and given by [14, 19]

hKerr/CFTµν ∼



O
(
r2
)
O
(

1
r2

)
O
(

1
r

)
O (1)

O
(

1
r3

)
O
(

1
r2

)
O
(

1
r

)
O
(

1
r

)
O
(

1
r

)
O (1)


. (5.17)

The fundamental question is whether these fall-off conditions are compatible with the

decays permitted by the linearized Einstein equation. Clearly, the biggest conflict be-

tween these two decays happens in the tr and tθ components. To have compatibility

between (5.16) and (5.17) in these components, η must be real, so traveling waves are

automatically excluded from the system if the Kerr/CFT fall-off is imposed. Real η means

that we use normalizable boundary conditions (i.e. the lower sign choice in (5.16)) and we

need η ≥ 3, if all the normal modes are to respect the Kerr/CFT fall-off. However, in

section 4.2 we found that there are many normal modes with η < 3; e.g. we found the

value of η = 0.03240 for l = |m| = 2 at r+/` = 0.5279, and η = 0.4242 for l = |m| = 3

and r+/` = 0.55. The conclusion of this analysis is that the Kerr/CFT fall-off condi-

tions exclude all traveling waves and some normal modes from the spectrum of allowed

perturbations.

As observed in [6], we could argue that a gauge transformation could map a mode

violating the fall-off conditions onto one that satisfies these conditions. However, this

seems unlikely, especially for traveling waves. We could also restrict our choice of initial

data to a set of linear normal modes that satisfies the fall-off conditions but at the non-

linear level their interaction will most likely excite traveling modes (η2 < 0) that will

violate the Kerr/CFT fall-off conditions. Considering a further possibility, a sum of the

ingoing and outgoing radiation gauge perturbations (plus a diffeomorphism) does not obey

the Kerr/CFT fall-off conditions.

In the NHEK geometry, ref. [6] observed that the only modes that could evade this

conclusion are the axisymmetric gravitational modes (m = 0, l ≥ 2) which have η = 2l+1 >

3. So they do obey the Kerr/CFT fall-off conditions and they form a consistent truncation

of the full set of modes since linearized axisymmetric modes do not excite non-axisymmetric

modes at next order in perturbation theory. We find that the same conclusion holds when

` is finite, i.e. in the m = 0 sector, we always have η > 3 for 0 ≤ r+/` < 1/
√

3 (at least

for the cases 2 ≤ l ≤ 30 we verified). This is illustrated for the l = 3 and l = 16 cases in

figures 1–3: for m = 0 one has η = 2l + 1 > 3 for r+/` = 0 and then it decreases as r+/`

grows. But in its way up to r+/`→ 1/
√

3, η stays well above the critical value of 3.
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A Newman-Penrose formalism and Teukolsky equations

In this appendix we will provide a short summary of the Newman-Penrose formalism and

the Teukolsky perturbation equations including all formulae which are needed to derive our

results in the main part of the paper. Teukolsky’s original work only explicitly considers

vacuum spacetimes, but his formalism is valid for any Petrov type-D background (like

Kerr-AdS and NHEK-AdS).

A.1 Newman-Penrose formalism

The Newman-Penrose (NP) formalism is suited to study dynamics in spacetimes that have

at least one preferred null direction, e.g. type D backgrounds like Kerr-AdS and near-

horizon Kerr-AdS.

The formalism requires a tetrad basis which consists of a pair of real null vectors

e1 = `, e2 = n and a pair of complex conjugate null vectors e3 = m, e4 = m̄ . The vectors

obey the orthogonality relations ` ·m = ` · m̄ = n ·m = n · m̄ = 0 and are normalized

according to ` ·n=−1, m · m̄=1 .8 The Newman-Penrose formalism uses the tetrad basis

to define directional derivative operators D = `µ∇µ, ∆ = nµ∇µ, δ = mµ∇µ, δ̄ = m̄µ∇µ .

We will label spacetime indices with Greek letters and tetrad indices with Latin letters.

The central parameters of the formalism are three sets of complex scalars, defined as linear

combinations of components of the Weyl tensor, the Ricci tensor and the spin connection

γcab = e µ
b e

ν
c ∇µea ν , with γcab =−γacb . We will need the following two sets of scalars: the

spin coefficients

κ =−γ311, λ = γ424, ν = γ422, σ =−γ313, α = 1
2(γ124−γ344), β = 1

2(γ433−γ213),

µ = γ423, ρ =−γ314, π = γ421, τ =−γ312, γ = 1
2(γ122−γ342), ε = 1

2(γ431−γ211),

(A.1)

and the Weyl scalars

Ψ0 = C1313 , Ψ1 = C1213 , Ψ2 = C1342 , Ψ3 = C1242 , Ψ4 = C2424 . (A.2)

8The sign of both the normalization relations and the definition of all complex scalars in the Newman-

Penrose formalism is related to the signature of the metric. The equations of the formalism, however, are

independent of the metric signature. The definitions presented in this appendix are tied to the signature

(−,+,+,+).
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The complex conjugate of any quantity can be obtain through the replacement 3↔ 4. In

a Petrov type D spacetime all Weyl scalars except Ψ2 vanish: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0 .

Due to the Goldberg-Sachs theorem this entails κ = λ = ν = σ = 0 . In addition one can

set ε = 0 by choosing ` to be tangent to an affinely parametrized null geodesic `µ∇µ`ν = 0.

The various equations of the tetrad formalism can be rewritten using the directional

derivatives and the complex scalars of the Newman-Penrose formalism. The Maxwell equa-

tions can be treated analogously, one combines the elements of the electromagnetic tensor

Fµν into three complex scalars φ0, φ1, φ2 . Likewise the equations for the components of the

Neutrino spinor, χ0 and χ1, and the Rarita-Schwinger field, Φ0 and Φ3, can be incorporated

into the Newman-Penrose formalism.

A.2 Teukolsky equations

The perturbations of spin-s fields in a type D background like the Kerr-AdS geometry are

described by the Teukolsky decoupled equations, namely by equations (2.12)-(2.15), (3.5)-

(3.8), (B4)-(B5) of [3]. Spin s = ±2,±1,±3/2,±1/2 describes, respectively, gravitational,

electromagnetic, fermionic (±3/2,±1/2) perturbations. These Teukolsky equations for the

several spins can be written in a compact form as a pair of equations. For positive spin

field perturbations the Teukolsky equation is{[
D −

(
2s+− 1

)
ε+ ε̄− 2s+ρ− ρ̄

] (
∆ + µ− 2s+γ

)
−
[
δ + π̄ − ᾱ−

(
2s+− 1

)
β − 2s+τ

] (
δ̄ + π − 2s+α

)
+1

3 s
+
(
s+− 1

2

) (
s+− 1

) (
2s+− 7

)
Ψ2

}
δψ(s+) = 4πT(s+) , s+ = {1/2, 1, 3/2, 2},

(A.3)

while negative spin field perturbations are described by the Teukolsky equation{[
∆−

(
2s−+1

)
γ−γ̄−2s−µ+µ̄

] (
D−2s−ε−ρ

)
−
[
δ̄−τ̄+β̄−

(
2s−+1

)
α−2s−π

] (
δ−τ−2s−β

)
+1

3s
−(s−+ 1

2

) (
s−+ 1

) (
2s−+ 7

)
Ψ2

}
δψ(s−) = 4πT(s−) , s− = {−1/2,−1,−3/2,−2}.

(A.4)

The explicit form of the source terms T(s±) is given in [3]. To make contact with the no-

tation of (2.9), note that δψ(2) ≡ δΨ0, δψ
(−2) ≡ δΨ4, δψ

(1) ≡ δφ0, δψ
(−1) ≡ δφ2, δψ

( 1
2

) ≡
δχ0, δψ

(− 1
2

) ≡ δχ1, δψ
( 3

2
) ≡ δΦ0, δψ

(− 3
2

) ≡ δΦ3. Use of (2.9) in (A.3) and (A.4)

yields (2.8), in the Kerr-AdS black hole case, and (3.7), in the NHEK-AdS geometry case,

which are the master equations for the master fields Ψ(s). The Teukolsky equations (A.3)

and (A.4) are complemented by the Klein-Gordon equation which describes massless scalar

perturbations (s = 0), δψ(0) ≡ Ψ(0),

∇2δψ(0) =
1√
−g

∂µ

(√
−ggµν∂νδψ(0)

)
= 0. (A.5)
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B Near-horizon limit of the extremal Kerr-AdS geometry

In this appendix we quickly review the near-horizon limit of the extreme Kerr-AdS black

hole (2.1) that generates the NHEK-AdS geometry (3.1), as first taken in [14]. We need

this explicit limit to discuss the relation between the perturbation frequencies in the full

and near-horizon geometries − see discussion associated with (3.15) − and to find the

master equation for perturbations in NHEK-AdS in the Poincaré frame (see next appendix).

Whether we start from the Kerr-AdS geometry in the rotating Boyer-Lindquist frame or

the non-rotating frame will make no difference to the end result.

First we will change to near-horizon coordinates, the associated transformation differs

slightly between the two frames. In the rotating frame we make the substitutions

r̂ → r+

(
1 + λ r′

)
, t̂→ A

λr+
t′ , φ̂→ φ′ +

B
λ r+

t′ , (B.1)

while in the non-rotating frame we replace

r̂ → r+

(
1 + λ r′

)
, t̂→ A

λr+
t′ , ϕ̂→ φ′ +

B

λr+
t′ . (B.2)

As the near-horizon geometry is a limit of the extremal Kerr-AdS black hole, the rela-

tions (2.5) hold. Substitute them into ∆r̂ to find

∆r̂ = V (r̂ − r+)2 +O
(

(r̂ − r+)3
)
, V =

1 + 6r2
+`
−2 − 3r4

+`
−4

1− r2
+`
−2

. (B.3)

Only the leading term of ∆r̂ in (B.3) is relevant for the derivation of the near-horizon

geometry. We adjust A such that the metric contains no divergent powers of λ and find

A =
(r2

++a2)
V . We now choose B (or B) such that φ′ co-rotates with the horizon and obtain

B = a
V

(
1− a2

`2

)
and B = a

V

(
1 +

r2
+

`2

)
. This difference between B and B is naturally due

to the coordinate transformation ϕ̂ = φ̂+ a
`2
t̂ relating the rotating/non-rotating frames of

the full geometry.

In a second step we take the near-horizon limit λ → 0 and find the NHEK-AdS

geometry in Poincaré coordinates

ds2 =
Σ 2

+

V

[
−r′2dt′2 +

dr′2

r′2
+
V dθ2

∆θ

]
+

sin2 θ∆θ

Σ 2
+

(
2ar+

V
r′dt′ +

(
r2

+ + a2
)

Ξ
dφ′

)2

, (B.4)

where Σ2
+ =r2

+ + a2 cos2 θ and ∆θ is defined in (2.2). A further coordinate transformation

rewrites the NHEK-AdS metric in global coordinates. AdS2 is described by the hyperboloid

Z2 −X2 − Y 2 = −1 in R3 . Its Poincaré coordinates {r′, t′} and global coordinates {r, t}
are related via the relations

X + Z = r′ , X − Z =
1

r′
− r′t′2 , Y = r′t′ ,

X =
√

1 + r2 cos t , Y =
√

1 + r2 sin t , Z = r .

(B.5)
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From these definitions we find

− r′2dt′2 +
dr′2

r′2
= −

(
1 + r2

)
dt2 +

dr2

1 + r2
, r′dt′ = rdt+ dγ , (B.6)

where

γ = ln

(
1 +
√

1 + r2 sin t

cos t+ r sin t

)
. (B.7)

To set grφ = 0 we make the final coordinate transformation

θ → θ , φ′ → φ+
2ar+Ξγ

(r2
+ + a2)V

, (B.8)

and we find the line element (3.1) of the NHEK-AdS geometry in global coordinates. In

the limit of a vanishing cosmological constant, which corresponds to `→∞ , it reduces to

the line element of the NHEK geometry [4].

C Master equation for NHEK-AdS in Poincaré coordinates

The Poincaré coordinate patch is commonly used in applications of the AdS/CFT corre-

spondence. So, for the sake of completeness, we will present the equivalent of equation (3.7)

in Poincaré coordinates {t′, r′, θ, φ′}.
To derive this equation we must apply the near-horizon limit (B.2) to the master

equation (2.8) for the Kerr-AdS geometry. Doing so we find that a spin-s perturbation

f (s)(t′, r′, θ, φ′) in the NHEK-AdS background obeys the Teukolsky master equation

V

r′2
∂2
t′f

(s)− 4aΞr+(
r2

++a2
)
r′
∂t′∂ϕ′f

(s)+

(
a2
(
r2

++`2
)2

Ξ

`2
(
r2

++a2
)2

∆θ

−
Ξ2a2

(
`2 − r2

+

)
4r4

+V
− Ξ

sin2 θ

)
∂2
ϕ′f

(s)

−V r′−2s ∂r′
(
r′2(s+1) ∂r′f

(s)
)
− 1

sin θ
∂θ

(
sin θ∆θ ∂θf

(s)
)
− 2sV

r′
∂t′f

(s)

−2 i sΞ cos θ

(
1

sin2 θ
+

a2
(
r2

+ + `2
)

`2
(
r2

+ + a2
)

∆θ

)
∂ϕ′f

(s) +

[(
16s8 − 120s6 + 273s4

) Σ 2
+

18`2

+s2

(
Ξ

sin2 θ
− Ξ

∆θ
−
(
277r2

+ + 205a2 cos2 θ
)

18`2

)
− s

(
1 +

a2

`2
+

6r2
+

`2

)]
f (s) = 0 .

(C.1)

To separate the equation we choose the ansatz

f (s)(t′, r′, θ, φ′) = F (s)(t′, r′)S(s)(θ)eimφ
′

and obtain

V

r′ 2
∂2
t′F

(s) −

(
2sV

r′
+ i

4 amr+ Ξ(
a2 + r2

+

)
r′

)
∂t′F

(s)

−V r′ −2s ∂r′
(
r′ 2(s+1) ∂r′F

(s)
)

+ V

(
Λ

(s)
lm −

7m2

4

)
F (s) = 0 .

(C.2)
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The equation for S(s)(θ) is identical to the angular equation in global coordinates (3.9). The

flat limit of our results agrees with the corresponding equations for the NHEK geometry

written in appendix A.2 of [6].9

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

References

[1] B.F. Whiting, Mode stability of the Kerr black hole, J. Math. Phys. 30 (1989) 1301 [INSPIRE].

[2] W.H. Press and S.A. Teukolsky, Perturbations of a Rotating Black Hole. II. Dynamical

Stability of the Kerr Metric, Astrophys. J. 185 (1973) 649 [INSPIRE].

[3] S.A. Teukolsky, Perturbations of a rotating black hole. 1. Fundamental equations for

gravitational electromagnetic and neutrino field perturbations, Astrophys. J. 185 (1973) 635

[INSPIRE].

[4] J.M. Bardeen and G.T. Horowitz, The Extreme Kerr throat geometry: A Vacuum analog of

AdS2 × S2, Phys. Rev. D 60 (1999) 104030 [hep-th/9905099] [INSPIRE].

[5] A.J. Amsel, G.T. Horowitz, D. Marolf and M.M. Roberts, No Dynamics in the Extremal

Kerr Throat, JHEP 09 (2009) 044 [arXiv:0906.2376] [INSPIRE].

[6] O.J. Dias, H.S. Reall and J.E. Santos, Kerr-CFT and gravitational perturbations, JHEP 08

(2009) 101 [arXiv:0906.2380] [INSPIRE].

[7] D. Marolf, The dangers of extremes, Gen. Rel. Grav. 42 (2010) 2337 [arXiv:1005.2999]

[INSPIRE].

[8] S. Aretakis, Horizon Instability of Extremal Black Holes, arXiv:1206.6598 [INSPIRE].

[9] J. Lucietti and H.S. Reall, Gravitational instability of an extreme Kerr black hole,

arXiv:1208.1437 [INSPIRE].

[10] B. Carter, Hamilton-Jacobi and Schrödinger separable solutions of Einstein’s equations,

Commun. Math. Phys. 10 (1968) 280 [INSPIRE].

[11] O.J. Dias, G.T. Horowitz and J.E. Santos, Gravitational Turbulent Instability of

Anti-de Sitter Space, Class. Quant. Grav. 29 (2012) 194002 [arXiv:1109.1825] [INSPIRE].

[12] S. Hawking and H. Reall, Charged and rotating AdS black holes and their CFT duals, Phys.

Rev. D 61 (2000) 024014 [hep-th/9908109] [INSPIRE].

[13] V. Cardoso, O.J. Dias and S. Yoshida, Classical instability of Kerr-AdS black holes and the

issue of final state, Phys. Rev. D 74 (2006) 044008 [hep-th/0607162] [INSPIRE].
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