24,769 research outputs found
Combining pot, atom and step economy (PASE) in organic synthesis. Synthesis of tetrahydropyran-4-ones
The combination of pot, atom and step economy (PASE) in the synthesis of organic molecules of medium complexity can lead to a significant 'greening' of a synthetic route. This is demonstrated by the synthesis of highly substituted tetrahydropyran-4-ones and is quantified by a series of recognised metrics, which demonstrate the efficiency of combining PASE over conventional synthetic strategies
Short-term growth and biomechanical responses of the temperate seagrass Cymodocea nodosa to CO2 enrichment
Seagrasses are often regarded as climate change 'winners' because they exhibit higher rates of photosynthesis, carbon fixation and growth when exposed to increasing levels of ocean acidification. However, questions remain whether such growth enhancement compromises the biomechanical properties of the plants, altering their vulnerability to structural damage and leaf loss. Here, we investigated the short-term (6 wk) effects of decreasing pH by CO2 enrichment on the growth, morphology and leaf-breaking force of the temperate seagrass Cymodocea nodosa. We found that the plant biomass balance under levels of acidification representative of short-term climate change projections (pH 8.04) was positive and led to an increase in leaf abundance in the shoots. However, we also found that plant biomass balance was negative under levels of acidification experienced presently (pH 8.29) and those projected over the long-term (pH 7.82). Leaf morphology (mean leaf length, thickness and width) was invariant across our imposed acidification gradient, although leaves were slightly stronger under [CO2] representative of short-term climate change. Taken together, these findings indicate that a subtle increase in growth and mechanical resistance of C. nodosa is likely to occur following short-to medium-term changes in ocean chemistry, but that these positive effects are unlikely to be maintained over the longer term. Our study emphasises the need to account for the interdependencies between environmental conditions and variations in multiple aspects of the structure and functioning of seagrass communities when considering the likely consequences of climate change.Mobility Fellowships Programme of the EuroMarine Consortium (European Commission Seventh Framework Programme) [FP7-ENV-2010.2.2.1-3]; Foundation of Science and Technology of Portugal [SFRH/BPD/119344/2016, PTDC/MAR-EST/3223/2014]; Natural Environment Research Council (NERC) through the UK Ocean Acidification Research Programme (UKOARP) [NE/H017445/1]info:eu-repo/semantics/publishedVersio
The 3D Dimer and Ising Problems Revisited
We express the finite 3D Dimer partition function as a linear combination of
determinants of oriented adjacency matrices, and the finite 3D Ising partition
sum as a linear combination of products over aperiodic closed walks. The
methodology we use is embedding of cubic lattice on 2D surfaces of large genus
On the future of controllable fluid film bearings
This work gives an overview of the theoretical and experimental achievements of mechatronics applied to fluid film bearings. Compressible and uncompressible fluids are addressed. Rigid and elastic (deformable) bearing profiles are investigated. Hydraulic, pneumatic, magnetic and piezoelectric actuators are used. The ideas of combining control techniques, informatics with hydrodynamic, thermo-hydrodynamic, elasto-hydrodynamic and thermo-elasto-hydrodynamic lubrication techniques are carefully explored in this paper, considering theoretical as well as experimental aspects. The main goal of using controllable fluid film bearings is to improve the overall machine performance by: controlling the lateral vibration of rigid and flexible rotating shafts; modifying bearing dynamic characteristics, such as stiffness and damping properties; increasing the rotational speed ranges by enhancing damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing start-up torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable fluid film bearings can act as “smart” machine components and be applied to rotating and reciprocating machines with the goal of avoiding unexpected stops of plants, performing rotor dynamic tests and identifying model parameters “on site”. Emphasis is given to the controllable lubrication (hybrid and active) applied to different types of oil film bearings under different lubrication regimes, i.e., as tilting-pad journal bearings, multi-recess journal bearings and plain journal bearings. After a comprehensive overview of the theoretical and experimental technological advancements achieved in university laboratories, the feasibility of industrial applications is highlighted, trying to foresee the future trends of such mechatronic devices
Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region
The aim of this study is to investigate the folding reaction of human frataxin, whose deficiency causes the neurodegenerative disease Friedreich’s Ataxia (FRDA). The characterization of different conformational states would provide knowledge about how frataxin can be stabilized without altering its functionality. Wild-type human frataxin and a set of mutants, including two highly destabilized FRDA-associated variants were studied by urea-induced folding/unfolding in a rapid mixing device and followed by circular dichroism. The analysis clearly indicates the existence of an intermediate state (I) in the folding route with significant secondary structure content but relatively low compactness, compared with the native ensemble. However, at high NaCl concentrations I-state gains substantial compaction, and the unfolding barrier is strongly affected, revealing the importance of electrostatics in the folding mechanism. The role of the C-terminal region (CTR), the key determinant of frataxin stability, was also studied. Simulations consistently with experiments revealed that this stretch is essentially unstructured, in the most compact transition state ensemble (TSE2). The complete truncation of the CTR drastically destabilizes the native state without altering TSE2. Results presented here shed light on the folding mechanism of frataxin, opening the possibility of mutating it to generate hyperstable variants without altering their folding kinetics.Fil: Faraj, Santiago Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gonzalez-Lebrero, Rodolfo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Roman, Ernesto Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Santos, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin
Information on Transcriptional Regulation and Signal Transduction of _Escherichia coli_ K-12 Integrated in the Database RegulonDB.
Since its inception, RegulonDB ("http://regulondb.ccg.unam.mx/":http://regulondb.ccg.unam.mx/) has been a database that compiles information about the regulation of transcription initiation of _Escherichia coli_ K-12. However, we are aware that transcriptional regulation is not an isolated process; instead, it is the response to the different environmental conditions that trigger a series of concatenated reactions that end in transcriptional regulation, and it implies an adequate response in terms of induced and repressed gene products. We are working now to include all these new data in RegulonDB. As a consequence, transcriptional regulation in RegulonDB will be part of a unit that initiates with the signal, continues with the signal transduction to the core of regulation to modify expression of the affected set of target genes, and ends with an adequate response. We refer to these units as genetic sensory response units, or Gensor Units.

The inclusion of Gensor Units will bring a dramatic change and expansion of RegulonDB, due to the fact that we will be adding several new types of reactions and interactions. We started to collect data about signal transduction of the sigma factors, the two-component systems, of some transcription factors involved in carbon source utilization, and of genes involved in the synthesis of amino acids. We plan a high-level curation with super-pathways summarizing concatenated sets of reactions linked to those other databases that curate such information, while enabling with RegulonDB a compilation of complete Gensor Units.

In addition, the number of DNA binding sites for some transcription factors has grown considerably, and therefore we decided to review systematically those sites whose lengths ranging from 40 to 60 bp with orientation and consensus sequences that are not easy to identify. The current version of RegulonDB is the beginning of a higher-level curation of gene regulation information, and eventually our database will include all regulatory mechanisms and their regulated genes. 

Identifying Clickbait: A Multi-Strategy Approach Using Neural Networks
Online media outlets, in a bid to expand their reach and subsequently
increase revenue through ad monetisation, have begun adopting clickbait
techniques to lure readers to click on articles. The article fails to fulfill
the promise made by the headline. Traditional methods for clickbait detection
have relied heavily on feature engineering which, in turn, is dependent on the
dataset it is built for. The application of neural networks for this task has
only been explored partially. We propose a novel approach considering all
information found in a social media post. We train a bidirectional LSTM with an
attention mechanism to learn the extent to which a word contributes to the
post's clickbait score in a differential manner. We also employ a Siamese net
to capture the similarity between source and target information. Information
gleaned from images has not been considered in previous approaches. We learn
image embeddings from large amounts of data using Convolutional Neural Networks
to add another layer of complexity to our model. Finally, we concatenate the
outputs from the three separate components, serving it as input to a fully
connected layer. We conduct experiments over a test corpus of 19538 social
media posts, attaining an F1 score of 65.37% on the dataset bettering the
previous state-of-the-art, as well as other proposed approaches, feature
engineering or otherwise.Comment: Accepted at SIGIR 2018 as Short Pape
- …