6,401 research outputs found

    Long noncoding RNAs: a missing link in osteoporosis

    Get PDF
    Osteoporosis is a systemic disease that results in loss of bone density and increased fracture risk, particularly in the vertebrae and the hip. This condition and associated morbidity and mortality increase with population ageing. Long noncoding (lnc) RNAs are transcripts longer than 200 nucleotides that are not translated into proteins, but play important regulatory roles in transcriptional and post-transcriptional regulation. Their contribution to disease onset and development is increasingly recognized. Herein, we present an integrative revision on the studies that implicate lncRNAs in osteoporosis and that support their potential use as therapeutic tools. Firstly, current evidence on lncRNAs involvement in cellular and molecular mechanisms linked to osteoporosis and its major complication, fragility fractures, is reviewed. We analyze evidence of their roles in osteogenesis, osteoclastogenesis, and bone fracture healing events from human and animal model studies. Secondly, the potential of lncRNAs alterations at genetic and transcriptomic level are discussed as osteoporosis risk factors and as new circulating biomarkers for diagnosis. Finally, we conclude debating the possibilities, persisting difficulties, and future prospects of using lncRNAs in the treatment of osteoporosis.This project has been supported by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project POCI-01-0145-FEDER-031402—R2Bone, under the PORTUGAL 2020 Partnership Agreement, through ERDF. Authors would like to thank to FCT DL 57/2016/CP1360/CT0008 (M.I.A.) and SFRH/BD/112832/2015 (J.H.T)

    Genetically engineered-MSC therapies for non-unions, delayed unions and critical-size bone defects

    Get PDF
    The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.This project is supported by Fundação para a Ciência e a Tecnologia (FCT)—in the framework of the project POCI-01-0145-FEDER-031402-R2Bone, under the PORTUGAL 2020 Partnership Agreement, through ERDF, co-funded by FEDER/FNR, and national funding (through FCT – Fundação para a Ciência e a Tecnologia, I.P., provided by the contract-program and according to numbers 4, 5 and 6 of art. 23 of Law No. 57/2016 of 29 August 2016, as amended by Law No. 57/2017 of 19 July 2017). RG, JHT, and MIA are supported by FCT, through the FCT Investigator Program (IF/00638/2014), SFRH/BD/112832/2015, and DL 57/2016/CP1360/CT0008, respectively

    The systemic immune response to collagen-induced arthritis and the impact of bone injury in inflammatory conditions

    Get PDF
    Rheumatoid arthritis (RA) is a systemic disease that affects the osteoarticular system, associated with bone fragility and increased risk of fractures. Herein, we aimed to characterize the systemic impact of the rat collagen-induced arthritis (CIA) model and explore its combination with femoral bone defect (FD). The impact of CIA on endogenous mesenchymal stem/stromal cells (MSC) was also investigated. CIA induction led to enlarged, more proliferative, spleen and draining lymph nodes, with altered proportion of lymphoid populations. Upon FD, CIA animals increased the systemic myeloid cell proportions, and their expression of co-stimulatory molecules CD40 and CD86. Screening plasma cytokine/chemokine levels showed increased tumor necrosis factor-a (TNF-a), Interleukin (IL)-17, IL-4, IL-5, and IL-12 in CIA, and IL-2 and IL-6 increased in CIA and CIA+FD, while Fractalkine and Leptin were decreased in both groups. CIA-derived MSC showed lower metabolic activity and proliferation, and significantly increased osteogenic and chondrogenic differentiation markers. Exposure of control-MSC to TNF-a partially mimicked the CIA-MSC phenotype in vitro. In conclusion, inflammatory conditions of CIA led to alterations in systemic immune cell proportions, circulating mediators, and in endogenous MSC. CIA animals respond to FD, and the combined model can be used to study the mechanisms of bone repair in inflammatory conditions.This research was funded by the project NORTE-01-0145-FEDER-000012, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and AO Foundation-Switzerland (project S-15-83S). J.H.T, A.M.S, M.B.G, M.I.A and C.C were supported by FCT-Fundação para a Ciência e a Tecnologia, through the fellowships SFRH/BD/112832/2015, SFRH/BD/85968/2012, PD/BD/135489/2018, DL 57/2016/CP1360/CT0008 and DL 57/2016/CP1360/CT0004, respectively

    Controlling competing interactions at oxide interfaces: Enhanced anisotropy in La0.7Sr0.3MnO3 films via interface engineering

    Get PDF
    We investigated thin La0.7Sr0.3MnO3-SrTiO3 heterostructures, where the band alignment is engineered by a variation of La/Sr stoichiometry only at the interface. In thin films, the engineered interface leads to an enhancement of the reversed spin configuration that mimics bulk behavior. Microscopically, this enhancement is closely connected with an increased magnetic anisotropy as well as intercoupling between an e(g) orbital reconstruction and a corresponding anisotropic lattice fluctuation. Furthermore, a reentrant-type behavior, triggered by this intercoupling, is observed in the remanent spin state. This microscopic perspective leads to insights on developing new strategies for maintaining bulk-like properties even in very thin La0.7Sr0.3MnO3 heterostructures.open11910Ysciescopu

    Neurobiological substrates of chronic low back pain (CLBP): a brain [⁹⁹ᵐTc]Tc-ECD SPECT study

    Get PDF
    Background: Recent neuroimaging studies have demonstrated pathological mechanisms related to cerebral neuroplasticity in chronic low back pain (CLBP). Few studies have compared cerebral changes between patients with and without pain in the absence of an experimentally induced stimulus. We investigated the neurobiological substrates associated with chronic low back pain using [99mTc]Tc-ECD brain SPECT and correlated rCBF findings with the numeric rating scale (NRS) of pain and douleur neuropathique en 4 questions (DN4). Ten healthy control volunteers and fourteen patients with neuropathic CLBP due to lumbar disc herniation underwent cerebral SPECT scans. A quantitative comparison of rCBF findings between patients and controls was made using the Statistical Parametric Mapping (SPM), revealing clusters of voxels with a significant increase or decrease in rCBF. The intensity of CLBP was assessed by NRS and by DN4. / RESULTS: The results demonstrated an rCBF increase in clusters A (occipital and posterior cingulate cortex) and B (right frontal) and a decrease in cluster C (superior parietal lobe and middle cingulate cortex). NRS scores were inversely and moderately correlated with the intensity of rCBF increase in cluster B, but not to rCBF changes in clusters A and C. DN4 scores did not correlate with rCBF changes in all three clusters. / CONCLUSIONS: This study will be important for future therapeutic studies that aim to validate the association of rCBF findings with the pharmacokinetic and pharmacodynamic profiles of therapeutic challenges in pain

    Analysing the Impact of Rationality on the Italian Electricity Market

    Get PDF
    International audienceWe analyze the behavior of the Italian electricity market with an agent-based model. In particular, we are interested in testing the assumption that the market participants are fully rational in the economical sense. To this aim, we extend a previous model by considering a wider class of cases. After checking that the new model is a correct generalization of the existing model, we compare three optimization methods to implement the agents rationality and we verify that the model exhibits a very good fit to the real data. This leads us to conclude that our model can be used to predict the behavior of this market

    Metal accumulation in the tissues and shells of the Rapanine Whelk Indothais gradata along an acidified estuarine gradient

    Get PDF
    Human ImpactsPoster presentation: P-74Acidification of estuaries results from microbial CO2 generation, acid sulphate groundwater discharge, and anthropogenic activities, in the context of weak buffering potential of hyposaline waters. The resulting acidification introduces an additional yet poorly studied factor influencing the ecology and distributions of biological populations and species. Furthermore, it has a complex influence on estuarine chemistry, including altering the speciation of metals and potentially their availability to the biotic component. With the aim of providing baseline information for metal accumulation in the shells and tissues of organisms inhabiting acidified turbid tropical Asian estuaries, we studied the rapanine whelk Indothais gradata from the mineral-acidified Sungai ...postprin

    Optimization of the Kinematic Chain of the Thumb for a Hand Prosthesis Based on the Kapandji Opposition Test

    Get PDF
    Ponènica presentada a International Symposium on Computer Methods in Biomechanics and Biomedical Engineering - CMBBE 2019The thumb plays a key role in the performance of the hand for grasp-ing and manipulating objects. In artificial hands the complex thumb’s kinematic chain (TKC) is simplified and its five degrees of freedom are reduced to only one or two with the consequent loss of dexterity of the hand. The Kapandji op-position test (KOT) has been clinically used in pathological human hands for evaluating the thumb opposition and it has also been employed in some previ-ous studies as reference for the design of the TKC in artificial hands, but with-out a clearly stated methodology. Based on this approaches, in this study we present a computational method to optimize the whole TKC (base placement, link lengths and joint orientation angles) of an artificial hand based on its per-formance in the KOT. The cost function defined for the optimization (MPE) is a weighted mean position error when trying to reproduce the KOT postures and can be used also as a metric to quantify thumb opposition in the hand. As a case study, the method was applied to the improvement of the TKC of an artificial hand developed by the authors and the MPE was reduced to near one third of that of the original design, increasing significantly the number of reachable po-sitions in the KOT. The metric proposed based on the KOT can be used directly or in combination with other to improve the kinematic chain of artificial hands

    Expression of NES-hTERT in Cancer Cells Delays Cell Cycle Progression and Increases Sensitivity to Genotoxic Stress

    Get PDF
    Telomerase is a reverse transcriptase associated with cellular immortality through telomere maintenance. This enzyme is activated in 90% of human cancers, and inhibitors of telomerase are currently in clinical trials to counteract tumor growth. Many aspects of telomerase biology have been investigated for therapy, particularly inhibition of the enzyme, but little was done regarding its subcellular shuttling. We have recently shown that mutations in the nuclear export signal of hTERT, the catalytic component of telomerase, led to a mutant (NES-hTERT) that failed to immortalize cells despite nuclear localization and catalytic activity. Expression of NES-hTERT in primary fibroblast resulted in telomere-based premature senescence and mitochondrial dysfunction. Here we show that expression of NES-hTERT in LNCaP, SQ20B and HeLa cells rapidly and significantly decreases their proliferation rate and ability to form colonies in soft agar while not interfering with endogenous telomerase activity. The cancer cells showed increased DNA damage at telomeric and extra-telomeric sites, and became sensitive to ionizing radiation and hydrogen peroxide exposures. Our data show that expression of NES-hTERT efficiently counteracts cancer cell growth in vitro in at least two different ways, and suggest manipulation with the NES of hTERT or its subcellular shuttling as a new strategy for cancer treatment

    The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803

    Get PDF
    Many cyanobacteria produce extracellular polymeric substances (EPS) mainly composed of heteropolysaccharides with unique characteristics that make them suitable for biotechnological applications. However, manipulation/optimization of EPS biosynthesis/characteristics is hindered by a poor understanding of the production pathways and the differences between bacterial species. In this work, genes putatively related to different pathways of cyanobacterial EPS polymerization, assembly, and export were targeted for deletion or truncation in the unicellular Synechocystis sp. PCC 6803. No evident phenotypic changes were observed for some mutants in genes occurring in multiple copies in Synechocystis genome, namely ¿wzy (¿sll0737), ¿wzx (¿sll5049), ¿kpsM (¿slr2107), and ¿kpsM¿wzy (¿slr2107¿sll0737), strongly suggesting functional redundancy. In contrast, ¿wzc (¿sll0923) and ¿wzb (¿slr0328) influenced both the amount and composition of the EPS, establishing that Wzc participates in the production of capsular (CPS) and released (RPS) polysaccharides, and Wzb affects RPS production. The structure of Wzb was solved (2.28 Å), revealing structural differences relative to other phosphatases involved in EPS production and suggesting a different substrate recognition mechanism. In addition, Wzc showed the ATPase and autokinase activities typical of bacterial tyrosine kinases. Most importantly, Wzb was able to dephosphorylate Wzc in vitro, suggesting that tyrosine phosphorylation/dephosphorylation plays a role in cyanobacterial EPS production.Norte Portugal Regional Operational Programme (NORTE 2020), Grant/Award Number: NORTE‐01‐0145‐FE?ER‐000008 and NORTE‐01‐0145‐FE?ER‐000012; FCT ‐ Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Ensino Superior, Grant/Award Number: PTDC/BIA‐ MIC/28779/2017, SFRH/BD /119920/2016, SFRH/B?/84914/2012 and SFRH/BD/99715/ 2014; FEDER ‐ Fundo Europeu de Desen‐ volvimento Regional funds through the COMPETE 2020 ‐ Operational Programme for Competitiveness and Internationalisation (POCI), Grant/Award Number: POCI‐01‐0145‐ FE?ER‐007274 ACKNOWLEDGMENTS: This work was financed by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020— Operational Programme for Competitiveness and Internationalisation (POCI); projects NORTE‐01‐0145‐FEDER‐000012—Structured Programme on Bioengineering Therapies for Infectious ?iseases and Tissue Regeneration and NORTE‐01‐0145‐FEDER‐000008— Porto Neurosciences and Neurologic Disease Research Initiative at i3S, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement; and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI‐01‐0145‐FEDER‐007274 and PTDC/BIA‐ MIC/28779/2017) and grants SFRH/BD /119920/2016 (MS), SFRH/ BD /99715/2014 (CF), and SFRH/BD /129921/2017 (JPL). The au‐ thors thank F. Chauvat and the Commissariat à l’Energie Atomique (CEA), Direction des Sciences du Vivant, for providing the cas‐ sette for the deletion of the Synechocystis sll0923, the staff of the European Synchrotron Radiation Facility (Grenoble, France) and SOLEIL (Essonne, France) synchrotrons, Filipe Pinto, Frederico Silva, Hugo Osório, and Joana Furtado for their technical assistance
    corecore