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Abstract. We analyze the behavior of the Italian electricity market
with an agent-based model. In particular, we are interested in testing
the assumption that the market participants are fully rational in the
economical sense. To this aim, we extend a previous model by consid-
ering a wider class of cases. After checking that the new model is a
correct generalization of the existing model, we compare three optimiza-
tion methods to implement the agents rationality and we verify that the
model exhibits a very good fit to the real data. This leads us to conclude
that our model can be used to predict the behavior of this market.

1 Introduction and Related Work

The need for understanding the evolution of the prices in the electrical power
markets has increased with the new trends (the emergence of the liberalized
market) of the electrical market in many countries [14, 13]. The use of Artifi-
cial Intelligence techniques has already proven to be effective in modeling the
electricity market. Faia et al. proposed in [3] a Genetic Algorithm (GA) based
approach to solve the portfolio optimization problem for simulating the Iberian
electricity market. The results show that their GA based method is able to
reach better results than previous implementations of Particle Swarm Optimiza-
tion (PS) and Simulated Annealing (SA) methods. Santos et al. proposed in [12]
a new version of the Multi-Agent System for Competitive Electricity Markets
(MASCEM, [11]) with the aim of optimizing it with repect to the results as well
as to the execution time.

Other models have been proposed, like the one presented by Urielli et al.
[17], in which the authors study the impact of the Time-Of-Use (TOU) tariffs
in a competitive electricity market place. A very interesting and recent survey
of potential design changes in the electricity market and their consequences, has
been proposed by Ela et al. in [2].

? The second author acknowledges support of the project PEPS AIRINFO funded by
the CNRS.
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In this paper, we propose a framework which helps analysing the behavior of
the participants in the Italian electrical power market [15]. We would like to stress
that our interest is in understanding how the market behaves as a consequence of
the actions of its participants to make profit, and also in analysing the behavior
of the market in order to maximize the social welfare from an economical rational
point of view [18, 16], i.e., with respect to the electricity producers as well as with
respect to the electricity consumers. To this aim, we first reproduce and then
extend an existing economical-based model for the Italian electricity market [7].

The paper is organized as follows. Section 2 briefly presents the three op-
timization methods used in the paper. Section 3 presents the mechanism of
exchanges in the Italian market proposed in the literature. Section 4 presents
the exteded model as well as the obtained results. Section 5 concludes the paper.

2 Some Background: A Brief Description of the used
Methods

In this section, we will briefly present the three methods used in our work to
model the rationality of the market participants.

A Genetic Algorithm (GA) [8, 6] is a computational technique inspired by
biology. The basic idea of a GA is to mimic the Darwinian principle of survival
according to which species with a high capacity of adaptation have an higher
probability to survive and then to reproduce. The algorithm considers a pop-
ulation of individuals represented by their genes. Three operators can be used
to mimic the evolution of these individuals: mutation which randomly changes
some bits of a gene, crossover which mimics the sexual reproduction of the living
beings, and selection which consists of deciding which among the individuals in
the population will survive in the next generation. This choice is made thanks
to a fitness function which is an objective function allowing to compute the ex-
tent to which an individual of the population is adapted to solve the considered
problem.

In Monte Carlo Optimization [1], an approximation to the optimum of an
objective function is obtained by drawing random points from a probability
distribution, evaluating them, and keeping the one for which the value of the
objective function is the greatest (if a maximum is sought for) or the least (if a
minimum is sought for). As the number of points increases, the approximation
converges to the optimum.

Particle Swarm Optimization (PS) [10, 9] is a meta-heuristic method inspired
by the behavior or rules that guide the group of animals, for example bird flocks.
According to these rules, the members of the swarm need to balance two oppo-
site behaviors in order to reach the goal: individualistic behavior, in which each
element searches for an optimal solution, and social behavior, which allows the
swarm to be compact. Therefore, individuals take advantage from other searches
moving toward a promising region. In this algorithm, the evolution of the pop-
ulation is re-created by the changing of the velocity of the particles. The idea is
to tweak the values of a group of variables in order to make them become closer
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to the member of the group whose value is closest to the considered target. PS is
similar to genetic algorithms (GAs). It is also a population-based method with
the particularity that the elements of the population are iteratively modified
until a termination criterion is satisfied.

3 The Italian Electricity Market

3.1 The Market Configuration

The reality of the Italian Electricity Market which takes place in the Italian
Power Exchange (IPEX), considers a two-settlement market configuration with
a generic forward market and the Day-Ahead Market (DAM). The DAM price
value is commonly adopted as underlying for forward contracts; therefore, as
in Guerci et al. [7], we will refer to DAM as the spot (i.e. immediate, instant)
market session for simplicity. The forward market session is modeled by assuming
a common, zone-independent, and unique forward market price P f for all market
participants and by determining the exact historical quantity commitments for
each generating unit.

Definition 1 (Generating Company).
A generating company (GenCo) is an agent g, (with g = 1, 2, ..., G, and G is
the number of GenCos) which owns Ng generators4. The ith generator (where
i = 1, 2, . . . , Ng) has lower Q

i,g
and upper Qi,g production limits, which define

the feasible production interval for its hourly real-power production level Q̂i,g,h =

Q̂f
i,g,h + Q̂s

i,g,h ([MW]), with Q
i,g
≤ Q̂i,g,h ≤ Qi,g where Q̂f

i,g,h and Q̂s
i,g,h are

respectively the quantity sold in the forward market and the quantity accepted in
the DAM.

It is assumed that the company g takes a long position in the forward market
(it means that the company makes agreement with the market operator with
large advance) for each owned generator i, corresponding to a fraction fi,g,h
(where h indicates the hour of the day) of its hourly production capacity, that

is Q̂f
i,g,h = fi,g,h · Qi,g. The value of such fraction varies throughout the day,

indeed forward contracts are commonly sold according to standard daily profiles.
The value of fi,g,h has been estimated by looking at historical data and thus
corresponds to a realistic daily profile for each generator.

Definition 2 (Revenues for the forward and spot markets).

The revenue, Rf
g,h ([eh]), from forward contracts for company g is:

Rf
g,h =

Ng∑
i=1

Q̂f
i,g,h · P

f (1)

The spot revenue, Rs
g,h, per hour for GenCo g is obtained as follows:

4 In the following we will use the terms generator and power plant interchangeably.
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Rs
g,h =

Z∑
z=1

Q̂s
z,g,h · P s

z,h (2)

where P s
z,h is the price in the spot market in zone z at hour h, and Z is the

total number of zones.

Let Ci,g,h ([e/h])5 be the total cost (of production) function of the ith gener-
ator of GenCo g. The total profit per hour, πg,h, [e/h] for GenCo g is computed
as follows:

πg,h = Rs
g,h +Rf

g,h −
Ng∑
i=1

Ci,g,h(Q̂i,g,h) (3)

The considered set of thermal power plants, independently owned by GenCos,
consists of up to 224 generating units, using 5 different technologies. The num-
ber of generation companies and generating units offering in the DAM varies
throughout the day. Based on historical data, it has been determined for each
period (day and hour) the thermal power plants that offered in DAM.6 For each
power plant in the dataset, information on the maximum and minimum capacity
limits is available, as well as on the parameters needed to compute the cost.

3.2 Market Exchanges

A GenCo g submits to the DAM a bid consisting of a pair of values corresponding
to the limit price P s

i ([e/MW]) and the maximum quantity of power Qs
i ≤

Qi,g−Q̂
f
i,g([MW]) that it is willing to be paid and to produce, respectively. After

receiving all generators bids, the market operator clears the DAM by performing
a social welfare maximization, subject to the following constraints:

– the zonal energy balance (Kirchhoffs laws),
– the maximum and minimum capacity of each power plant,
– the inter-zonal transmission limits.

It is worth noting that the Italian demand curve in the DAM is price-inelastic,
i.e., it is unaffected when the price changes. Therefore, the social welfare maxi-
mization can be transformed into a minimization of the total reported production
costs, i.e., of the bid prices (see Equation 4). This mechanism determines both
the unit commitments for each generator and the Locational Marginal Price
(LMP) for each connection bus. However, the Italian market introduces two
slight modifications. Firstly, sellers are paid the zonal prices (LMP), therefore,
this fact has to be explicitly considered in the model, whereas buyers pay a

5 The details about the function can be found in [7].
6 Notice that bid data are publicly available on the power exchange website with a

one-week delay, therefore, information about what plants were actually present and
the like is supposed to be common knowledge.
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unique national price (PUN, Prezzo Unico Nazionale) common for the whole
market and computed as a weighted average of the zonal prices with respect to
the zonal loads. Secondly, transmission power-flow constraints differ according
to the flow direction.

The factor which has to be minimized by solving the linear program is the
following:

min

G∑
g=1

Ng∑
i=1

P s
i,g,hQ̂

s
i,g,h (4)

It is subjected to the following constraints:

– Active power generation limits: Q
i,g
≤ Q̂i,g,h = Q̂s

i,g,h + Q̂f
i,g,h ≤ Qi,g [MW]

– Active power balance equations for each zone z:∑G
g=1

∑
j∈z Q̂

s
j,g,h −Qz,load,h = Qz,inject,h [MW]

being
∑G

g=1

∑
j∈z Q̂

s
j,g,h the sum of all the productions over all generators lo-

cated in zone z,Qz,load,h, the load demand at zone z in hour h andQz,inject,h,
the net oriented power injection in the network at zone z in hour h.

– Real power flow limits of line, l: Ql,st ≤ Ql,st [MW] and Ql,ts ≤ Ql,ts [MW]

being Ql,st the power flowing from zone s to zone t of line l and Ql,st the
maximum transmission capacity of line l in the same direction. Ql,st are
calculated with the standard DC power flow model [4].

The solution consists of the set of the active powers Q̂s
i,g,h generated by each

plant i and the set of zonal prices P s
z (LMPs) for each zone z ∈ [1, 2, . . . , Z],

where Z is the number of zones.

4 Relaxing the zonal constraint

In this section we will present the new “relaxed” framework as well as the results
we have obtained from our experiments.

4.1 Model description

Each GenCo g must submit to the DAM a bid, i.e., a set of prices for each of
its own power plants. Therefore, each GenCo has an action space for each power
plant, which is a set of possible prices that the GenCo can choose. This set is
represented by Vector ASi,g which is obtained with the following product:

ASi,g = MCi,g ·MKset, (5)

where, ASi,g represents the action space of power plant i of Genco g, MCi,g is
the marginal cost of the same power plant, and MKset = [1.00, 1.04, . . . , 5.00] is
the vector with the mark-up levels. In this way, GenCos are sure not to propose
a price lower than the costs.
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The Multi-Agent System The multi-agent system is depicted in Figure 1.
The G GenCos are reported on the top of the figure. These GenCos repeatedly
interact with each other at the end of each period r ∈{1,. . . ,R}, that is they
all submit bids to the DAM according to their current beliefs on opponents
strategies. At the beginning of each period r, GenCos need to study the current

Fig. 1. A schematic representation of a simulation.

market situation in order to identify a better reply to the opponents, to be played
at period r + 1.

In order to choose the most competitive strategy, GenCos need to repeatedly
solve the market for different private strategies. This correponds to an optimiza-
tion problem.

4.2 The Optimization Process

In this context, the goal of the optimisation algorithm is to keep a large popula-
tion of candidate strategies and to improve at the same time their fitness/perfor-
mance in the market. Thus, a population of size P , (see Figure 1), of strategies
is defined, which will evolve throughout the Kr generations. Unlike Guerci et
al. [7], we consider that each power plant can have its own strategy independently
of the zone.

A strategy In this new framework, a strategy for a GenCo g, depicted as a
black dot in Figure 1, is a vector of prices in the action space, one for each of
the Ng power plants of GenCo g.
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The two used fitness functions In [7], for a given GenCo g, a fitness function,
fg : RAg → R returns the profit of a strategy which is a vector of prices in the
action space, one for each collection of power plants, (Ag), situated in the same
zone and using the same technology. As it has been defined in [7], such a fitness
reinforces the weight of the power plants with low prices. We will name it type
1 fitness.

In our “relaxed” framework, instead, for a given GenCo g, a fitness function,
f ′g : RNg → R returns the profit of a strategy which is a vector of prices in
the action space, one for each single power plant. Here, we propose a more
“realistic” fitness which considers the amount of profit (given by Equation 3) a
given individual (strategy) allows the power plans to get. We will name it type
2 fitness.

Selecting a Strategy At the end of each period r, each GenCo bids to the
market by selecting one strategy belonging to its current population of candi-
dates.

In [7] the selection is done according to a probabilistic choice model in order to
favor the most represented strategy in the population (i.e., based on the frequency
probability). Here, in addition to the frequency based strategy of selection used in
[7], we use a second strategy based on the value of the fitness of the individuals.
We name it fitness-based strategy.

4.3 Evaluation of the Proposed Approach

We have considered and tested two different market models:

– ApproxGenco, which replicates the market model proposed in [7] — the
GenCos adopt a common strategy for all the power plants with a common
technology, situated in the same zone.

– RealGenco, which relaxes the above constraint and makes it possible to model
the fact that each power plant may adopt a different strategy — this is the
way it happens in the reality.

The goal of the experiments We have evaluated the effectiveness of the
proposed framework. To this aim we have:

– shown that our model really extends the model proposed in [7],
– verified if the fact of relaxing the assumptions according to which all the

power plants in the same zone should be associated to the same strategy
compromises the results,

– compared the results obtained with a simplest statistical method relying
on repeated random sampling as the Monte Carlo method with the results
obtained with the two studied models,

– verified if another population based-method like the Particle Swarm Opti-
misation (PS) method, lying on the hypothesis of cooperation between the
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individuals in the population, instead of Genetic Algorithms (GA) in which
the individuals of the population can be perceived as being in competition,
may improve the results.

The Different Scenarios In order to test the ability and the robustness of each
optimization method to reproduce the daily PUN time series, we have considered
the three methods (Genetic Algorithm, Particle Swarm, Montecarlo), the two
fitness functions, (type 1 and type 2 fitness) and the two types of strategy choice
(probability based and fitness based), obtaining thus the different scenarios listed
in Table 1.

Table 1. Experimental scenarios

Acronym
Fitness function of

the genetic algorithm
Best strategy choice

based on

GaFreq1 Type 1 Frequency

GaFreq2 Type 2 Frequency

GaFitness1 Type 1 Fitness

GaFitness2 Type 2 Fitness

PsFreq1 Type 1 Frequency

PsFreq2 Type 2 Frequency

PsFitness1 Type 1 Fitness

PsFitness2 Type 2 Fitness

Montecarlo Type 2 Fitness

Data The demand of energy for each zone is provided in a load matrix with
the following information: a first column which contains the zones, the second
which contains the maximum limit prices and the third column which contains
the demand quantities of electricity.

All the characteristics of the power plants are collected in a structure with
the following features:

– the names of the GenCos (for example ATEL, EDISON, . . .),
– the names of the used technologies (for example coal, combined cycle gas

turbine,. . .),
– the prices of the fuels,
– information related to the Italian power plants: the columns indicates re-

spectively the zone, maximum production quantity, minimum production
quantity, coefficient a, coefficient b, coefficient c (see 3), Genco’s id, technol-
ogy index, and fuel index and power plant’s id.
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– the production quantity data from other power plants (i.e. not produced by
the GenCo).

The PUN historical values used in the experiments are public data which can
be found in [5].

Implementation and Results The framework described has been imple-
mented in MATLAB R2017a with Optimization and Global Optimization tool-
boxes. Experiments were performed on a computer running Windows 7 and based
on an IntelCoreTMi7-3610QM @2.30GHz microprocessor with 8 GB RAM.

In all the simulations, the number of GenCos participating in the market
varies between 15 and 19, while the number of power plants for each GenCo
varies between 1 and 90. The three optimisation methods used the matlab de-
fault parameters and they are allocated the same number of objective function
evaluations.

The results of our experiments lead us to conclude that the ApproxGenco
model can be considered as a reliable replication of the model proposed in [7].
Indeed, under the same conditions (the ones supported by the old model), it
reproduces exactly the same market mechanism — we obtain the same result,
i.e., the same PUN with the two models.

In Figure 2, we can see the historical values (red line), as well as the values
obtained with [7] (we named it old) which are represented with dashed (purple)
lines and the values obtained with our relaxed model under the same assumptions
that the ones made in [7] (we named it GAfreq1, they are represented by the
green line with squares).

Fig. 2. Reproducibility – Real and simulated PUNs provided by ApproxGenco.

We can now proceed with its comparison with the alternative scenarios.
Two interesting points emerge. We can observe, thanks to the results illus-

trated in Figure 3, that despite having “relaxed” the constraint reducing the
action space, and under the same assumptions, (i) the results are similar for
both ApproxGenco and RealGenco models, i.e., the simulated PUN is similar, (ii)
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the time needed for running the ApproxGenco and RealGenco models is simi-
lar. More precisely, the running time of each iteration for ApproxGenco with a
population of 50 elements is 11.62 seconds for GA, 15.76 seconds for PS, and
11.34 seconds for Monte Carlo. Concerning the RealGenco the values are: 14.56
seconds for GA, 18.68 seconds for PS and 10,5 seconds for Monte Carlo.

We can then conclude that we can take into account the differences between
the power plants as for example their different efficiency levels without worsening
the quality of the results.

Evaluation of the RMSD. These considerations at macro-level are supported by
the evaluation of the root-mean-square deviation (RMSD) which is a frequently
used measure of the difference between values predicted by a model and the
values actually observed. The RMSD represents the sample standard deviation
of the differences between predicted values and observed values. The formula we
have used is the following:

RMSD =

√∑24
h=1(ŷh − yh)2

24
(6)

where h represents the hour of the day (therefore it varies between 1 and 24), ŷh
and yh are respectively the predicted value and the observed value of the PUN
at hour h.

Figure 3 shows the RMSD of all the scenarios we have considered for Ap-
proxGenco’s and RealGenco’s.

Fig. 3. RMSD for ApproxGenco and RealGenco methods

Evaluation of the absolute error. These considerations at macro-level are also
supported by the results concerning the absolute error which, in our work, rep-
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resents the distance between the curve with the historical PUNs values and the
one obtained from the different scenarios. The formula used is the following:

AEh = |prh − histh| (7)

where prh is the prediction at hour h and histh is the historical value of the
PUN at the same hour.

Fig. 4. Absolute errors for the best ApproxGenco model and for the RealGenco model.

Figure 4 illustrates the absolute errors for the three best optimization meth-
ods for both ApproxGenco and RealGenco models. We can notice that in the
ApproxGenco model the results obtained by the three PS algorithms are better
than the ones obtained by the best GA algorithm in the peak hours. Instead,
during the off-peak hours the GA algorithm outperforms two out of three PS
algorithms. Things are slightly different with the RealGenco model, where PS-
fitness1 (cyan line with squares) outperforms all the other algorithms in the
off-peak hours while it produces the worse results in the peak hours. However,
the PSfreq1 algorithm (dashed purple line) outperforms all the others in the
peak hours.

5 Conclusion

We have extended an existing agent-based model of the Italian electricity market
and we have investigated the rationality of the market participants by comparing
three optimization methods.

We can conclude that in the reality the planning for managing GenCos fol-
lows a rational strategy which can be modeled thanks to an optimization method
without reducing the action space. We can also conclude that the particle swarm
optimization method is the method which allows to better simulate the behavior
of the agents in the Italian electricity market — its results better fit with the
historical PUN values. Therefore, our model can be used to predict the behav-
ior of the Italian electricity market, for example by performing counterfactual
analyses.
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