78 research outputs found

    Utilizing Youth Participatory Evaluation for 4-H Program Improvement

    Get PDF
    This archival publication may not reflect current scientific knowledge or recommendations. Current information available from the University of Minnesota Extension: https://www.extension.umn.edu.Minnesota 4-H Youth Development staff facilitated a Youth Participatory Evaluation project of youth-adult teams in the northwest region. From the pilot project, we found that young people, when supported by adults, have a successful experience in evaluating programs that are personal to them. We also found that this work has potential to change the quality of clubs by deepening the engagement of adults and youth through evaluation work. We conclude that similar projects could serve as a gateway for inviting youth's voice and their meaningful engagement in 4-H clubs

    Youth Work Matters: Online Professional Development for Youth Workers

    Get PDF
    As the field of youth development becomes more recognized as a profession, it is imperative that youth workers are trained in foundational youth development research and practice. However, accessibility and cost can limit participation in face-to-face workshops and conferences. Online, cohort-based courses are a viable method to offer professional development for youth workers. This program article provides an overview of the online course, Youth Work Matters, which has provided training to youth workers for over 10 years. The authors demonstrate that professional development for youth workers in an online setting will increase access to learning opportunities. This article also describes key components for an online, non-credit course for participants to gain knowledge, apply new concepts and participate in learning communities

    Regional deep hyperthermia: quantitative evaluation of predicted and direct measured temperature distributions in patients with high-risk extremity soft-tissue sarcoma

    Get PDF
    Background: Temperature distributions resulting from hyperthermia treatment of patients with high-risk soft-tissue sarcoma (STS) were quantitatively evaluated and globally compared with thermal simulations performed by a treatment planning system. The aim was to test whether the treatment planning system was able to predict correct temperature distributions. Methods: Five patients underwent computed tomography (CT) fluoroscopy-guided placement of tumor catheters used for the interstitial temperature measurements. For the simulations, five 3 D patient models were reconstructed by segmenting the patient CT datasets into different tissues. The measured and simulated data were evaluated by calculating the temperature change (ΔT), T90, T50, T20, Tmean, Tmin and Tmax, as well as the 90th percentile thermal dose (CEM43T90). In order to measure the agreement between both methods quantitatively, the Bland–Altman analysis was applied. Results: The absolute difference between measured and simulated temperatures were found to be 2°, 6°, 1°, 4°, 5° and 4 °C on average for Tmin, Tmax, T90, T50, T20 and Tmean, respectively. Furthermore, the thermal simulations exhibited relatively higher thermal dose compared to those that were measured. Finally, the results of the Bland–Altman analysis showed that the mean difference between both methods was above 2 °C which is considered to be clinically unacceptable. Conclusion: Given the current practical limitations on resolution of calculation grid, tissue properties, and perfusion information, the software SigmaHyperPlan™ is incapable to produce thermal simulations with sufficient correlation to typically heterogeneous tissue temperatures to be useful for clinical treatment planning

    DNA metabarcoding of fungal diversity in air and snow of Livingston Island, South Shetland Islands, Antarctica.

    Get PDF
    We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m3 of air were pumped through a 0.22 µm membrane. Snow obtained shortly after deposition was kept at room temperature and yielded 3.760 L of water, which was filtered using Sterivex membranes of 0.22 µm mesh size. The total DNA present was extracted and sequenced. We detected 171 fungal amplicon sequence variants (ASVs), 70 from the air and 142 from the snow. They were dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Mucoromycota. Pseudogymnoascus, Cladosporium, Mortierella and Penicillium sp. were the most dominant ASVs detected in the air in rank order. In snow, Cladosporium, Pseudogymnoascus, Penicillium, Meyerozyma, Lecidea, Malassezia, Hanseniaspora, Austroplaca, Mortierella, Rhodotorula, Penicillium, Thelebolus, Aspergillus, Poaceicola, Glarea and Lecanora were the dominant ASVs present. In general, the two fungal assemblages displayed high diversity, richness, and dominance indices, with the assemblage found in snow having the highest diversity indices. Of the total fungal ASVs detected, 29 were only present in the air sample and 101 in the snow sample, with only 41 present in both samples; however, when only the dominant taxa from both samples were compared none occurred only in the air and, among the rare portion, 26 taxa occurred in both air and snow. Application of HTS revealed the presence of a more diverse fungal community in the air and snow of Livingston Island in comparison with studies using traditional isolation methods. The assemblages were dominated by cold-adapted and cosmopolitan fungal taxa, including members of the genera Pseudogymnoascus, Malassezia and Rhodotorula, which include some taxa reported as opportunistic. Our results support the hypothesis that the presence of microbiota in the airspora indicates the possibility of dispersal around Antarctica in the air column. However, further aeromycology studies are required to understand the dynamics of fungal dispersal within and beyond Antarctica

    Intracellular nitrate storage by diatoms can be an important nitrogen pool in freshwater and marine ecosystems

    Get PDF
    Identifying and quantifying nitrogen pools is essential for understanding the nitrogen cycle in aquatic ecosystems. The ubiquitous diatoms represent an overlooked nitrate pool as they can accumulate nitrate intracellularly and utilize it for nitrogen assimilation, dissipation of excess photosynthetic energy, and Dissimilatory Nitrate Reduction to Ammonium (DNRA). Here, we document the global co-occurrence of diatoms and intracellular nitrate in phototrophic microbial communities in freshwater (n = 69), coastal (n = 44), and open marine (n = 4) habitats. Diatom abundance and total intracellular nitrate contents in water columns, sediments, microbial mats, and epilithic biofilms were highly significantly correlated. In contrast, diatom community composition had only a marginal influence on total intracellular nitrate contents. Nitrate concentrations inside diatom cells exceeded ambient nitrate concentrations ∼100–4000-fold. The collective intracellular nitrate pool of the diatom community accounted for <1% of total nitrate in pelagic habitats and 65–95% in benthic habitats. Accordingly, nitrate-storing diatoms are emerging as significant contributors to benthic nitrogen cycling, in particular through Dissimilatory Nitrate Reduction to Ammonium activity under anoxic conditions
    corecore