6 research outputs found

    Data-driven estimation of flights’ hidden parameters

    Get PDF
    This paper presents a data-driven methodology for the estimation of flights’ hidden parameters, combining mechanistic and AI/ML models. In the context of this methodology the paper studies several AI/ML methods and reports on evaluation results for estimating hidden parameters, in terms of mean absolute error. In addition to the estimation of hidden parameters themselves, this paper examines how these estimations affect the prediction of KPIs regarding the efficiency of flights using a mechanistic model. Results show the accuracy of the proposed methods and the benefits of the proposed methodology. Indeed, the results show significant advances of data-driven methods to estimate hidden parameters towards predicting KPIs.This work has received funding from SESAR Joint Undertaking (JU) within SIMBAD project under grant agreement No 894241. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and the SESAR JU members other than the UnionPeer ReviewedPostprint (author's final draft

    A Stream Reasoning System for Maritime Monitoring

    Get PDF
    We present a stream reasoning system for monitoring vessel activity in large geographical areas. The system ingests a compressed vessel position stream, and performs online spatio-temporal link discovery to calculate proximity relations between vessels, and topological relations between vessel and static areas. Capitalizing on the discovered relations, a complex activity recognition engine, based on the Event Calculus, performs continuous pattern matching to detect various types of dangerous, suspicious and potentially illegal vessel activity. We evaluate the performance of the system by means of real datasets including kinematic messages from vessels, and demonstrate the effects of the highly efficient spatio-temporal link discovery on performance

    The academic advantage: gender disparities in patenting.

    Get PDF
    We analyzed gender disparities in patenting by country, technological area, and type of assignee using the 4.6 million utility patents issued between 1976 and 2013 by the United States Patent and Trade Office (USPTO). Our analyses of fractionalized inventorships demonstrate that women's rate of patenting has increased from 2.7% of total patenting activity to 10.8% over the nearly 40-year period. Our results show that, in every technological area, female patenting is proportionally more likely to occur in academic institutions than in corporate or government environments. However, women's patents have a lower technological impact than that of men, and that gap is wider in the case of academic patents. We also provide evidence that patents to which women--and in particular academic women--contributed are associated with a higher number of International Patent Classification (IPC) codes and co-inventors than men. The policy implications of these disparities and academic setting advantages are discussed
    corecore