135 research outputs found

    Heme catabolism by tumor-associated macrophages controls metastasis formation

    Get PDF
    Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1–CSF1R–C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker

    Landscape of immune-related signatures induced by targeting of different epigenetic regulators in melanoma: implications for immunotherapy

    Get PDF
    Background Improvement of efficacy of immune checkpoint blockade (ICB) remains a major clinical goal. Association of ICB with immunomodulatory epigenetic drugs is an option. However, epigenetic inhibitors show a heterogeneous landscape of activities. Analysis of transcriptional programs induced in neoplastic cells by distinct classes of epigenetic drugs may foster identification of the most promising agents. Methods Melanoma cell lines, characterized for mutational and differentiation profile, were treated with inhibitors of DNA methyltransferases (guadecitabine), histone deacetylases (givinostat), BET proteins (JQ1 and OTX-015), and enhancer of zeste homolog 2 (GSK126). Modulatory effects of epigenetic drugs were evaluated at the gene and protein levels. Master molecules explaining changes in gene expression were identified by Upstream Regulator (UR) analysis. Gene set enrichment and IPA were used respectively to test modulation of guadecitabine-specific gene and UR signatures in baseline and on-treatment tumor biopsies from melanoma patients in the Phase Ib NIBIT-M4 Guadecitabine + Ipilimumab Trial. Prognostic significance of drug-specific immune-related genes was tested with Timer 2.0 in TCGA tumor datasets. Results Epigenetic drugs induced different profiles of gene expression in melanoma cell lines. Immune-related genes were frequently upregulated by guadecitabine, irrespective of the mutational and differentiation profiles of the melanoma cell lines, to a lesser extent by givinostat, but mostly downregulated by JQ1 and OTX-015. GSK126 was the least active drug. Quantitative western blot analysis confirmed drug-specific modulatory profiles. Most of the guadecitabine-specific signature genes were upregulated in on-treatment NIBIT-M4 tumor biopsies, but not in on-treatment lesions of patients treated only with ipilimumab. A guadecitabine-specific UR signature, containing activated molecules of the TLR, NF-kB, and IFN innate immunity pathways, was induced in drug-treated melanoma, mesothelioma and hepatocarcinoma cell lines and in a human melanoma xenograft model. Activation of guadecitabine-specific UR signature molecules in on-treatment tumor biopsies discriminated responding from non-responding NIBIT-M4 patients. Sixty-five % of the immune-related genes upregulated by guadecitabine were prognostically significant and conferred a reduced risk in the TCGA cutaneous melanoma dataset. Conclusions The DNMT inhibitor guadecitabine emerged as the most promising immunomodulatory agent among those tested, supporting the rationale for usage of this class of epigenetic drugs in combinatorial immunotherapy approaches. © 2022, The Author(s)

    Timing of sentinel node biopsy independently predicts disease-free and overall survival in clinical stage I-II melanoma patients: A multicentre study of the Italian Melanoma Intergroup (IMI)

    Get PDF
    Background: Sentinel lymph node biopsy (SNB) still remains a key procedure to appropriately stage melanoma patients and to select those who are candidate to novel treatments with immunotherapy and targeted therapy in the adjuvant setting. The impact of timing of SNB on disease-free survival (DFS) and overall survival (OS) is still unclear. Material and methods: The study was conducted at 6 Italian Melanoma Intergroup (IMI) centres and included 8953 consecutive clinical stage I-II melanoma patients who were diagnosed, treated, and followed up between November 1997 and March 2018. All patients were prospectively included in dedicated IMI database. Multivariable Cox regression analyses were performed to investigate how baseline characteristics and time interval until SNB are related to DFS and OS. Results: Considering the whole population, at multivariable analysis, after adjusting for age, gender, Breslow thickness, site, ulceration, and the SNB status, a delay in the timing of SNB was associated with a better DFS (adjusted hazard ratio [aHR, delayed versus early SNB] 0.98, 95% confidence interval [CI] 0.97\u20130.99, p < 0.001) and OS (aHR 0.98, 95% CI 0.97\u20130.99, p = 0.001). Specifically, in patients with a negative SNB status, a beneficial impact of delayed SNB (i.e. at least 32 days after primary excision) was confirmed for DFS (aHR 0.70, 95%CI 0.63\u20130.79, p < 0.001) and OS (aHR 0.69, 95%CI 0.61\u20130.78, p < 0.001), whereas in those with a positive SNB status, DFS (aHR 0.96, 95%CI 0.84\u20131.09, p = 0.534) and OS (aHR 0.94 95%CI 0.81\u20131.08, p = 0.374) were not significantly different in patients with early or delayed SNB. Conclusions: Our study does not support a strict time interval for SNB. These results may be useful for national guidelines, for counselling patients and reducing the number of high urgency referrals

    Melanoma contains CD133 and ABCG2 positive cells with enhanced tumorigenic potential

    Get PDF
    The failure to eradicate most cancers and in particular melanoma may be as fundamental as a misidentification of the target. The identification of cancer stem/initiating cells within the tumour population with a crucial role for tumour formation may open new pharmacological perspectives. Our data show three main novelties for human melanoma: firstly, melanoma biopsy contains a subset of cells expressing CD133 (CD133+) and the latter is able to develop a Mart-1 positive tumour in NOD-SCID mice. Secondly, the WM115, a human melanoma cell line, has been found to express both CD133 and ABCG2 markers. This cell line grows as floating spheroids, expresses typical progenitors and mature neuronal/oligodendrocyte markers and is able to transdifferentiate into astrocytes or mesenchymal lineages under specific growth conditions. As in xenografts generated with CD133+ biopsy melanoma cells, those produced by the cell line displayed lower levels of CD133 and ABCG2. Thirdly, the WM115 cells express the most important angiogenic and lymphoangiogenic factors such as notch 4, prox1 and podoplanin which can cooperate in the development of the tumourigenic capability of melanoma in vivo. Therefore, in this study, we demonstrate the presence of stem/initiating subsets in melanoma both in biopsy and in an established melanoma cell line grown in vitro and in xenografts. Interestingly, considering that melanoma gives metastasis primarily through lymphatic vessels, herein, we demonstrated that a melanoma cell line expresses typical lymphoangiogenic factors

    Analysis of Sentinel Node Biopsy and Clinicopathologic Features as Prognostic Factors in Patients With Atypical Melanocytic Tumors.

    Get PDF
    BACKGROUND: Atypical melanocytic tumors (AMTs) include a wide spectrum of melanocytic neoplasms that represent a challenge for clinicians due to the lack of a definitive diagnosis and the related uncertainty about their management. This study analyzed clinicopathologic features and sentinel node status as potential prognostic factors in patients with AMTs. PATIENTS AND METHODS: Clinicopathologic and follow-up data of 238 children, adolescents, and adults with histologically proved AMTs consecutively treated at 12 European centers from 2000 through 2010 were retrieved from prospectively maintained databases. The binary association between all investigated covariates was studied by evaluating the Spearman correlation coefficients, and the association between progression-free survival and all investigated covariates was evaluated using univariable Cox models. The overall survival and progression-free survival curves were established using the Kaplan-Meier method. RESULTS: Median follow-up was 126 months (interquartile range, 104-157 months). All patients received an initial diagnostic biopsy followed by wide (1 cm) excision. Sentinel node biopsy was performed in 139 patients (58.4%), 37 (26.6%) of whom had sentinel node positivity. There were 4 local recurrences, 43 regional relapses, and 8 distant metastases as first events. Six patients (2.5%) died of disease progression. Five patients who were sentinel node-negative and 3 patients who were sentinel node-positive developed distant metastases. Ten-year overall and progression-free survival rates were 97% (95% CI, 94.9%-99.2%) and 82.2% (95% CI, 77.3%-87.3%), respectively. Age, mitotic rate/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss were factors affecting prognosis in the whole series and the sentinel node biopsy subgroup. CONCLUSIONS: Age >20 years, mitotic rate >4/mm2, mitoses at the base of the lesion, lymphovascular invasion, and 9p21 loss proved to be worse prognostic factors in patients with ATMs. Sentinel node status was not a clear prognostic predictor

    The role of sentinel node tumor burden in modeling the prognosis of melanoma patients with positive sentinel node biopsy: an Italian melanoma intergroup study (N = 2,086)

    Get PDF
    Background The management of melanoma patients with metastatic melanoma in the sentinel nodes (SN) is evolving based on the results of trials questioning the impact of completion lymph node dissection (CLND) and demonstrating the efficacy of new adjuvant treatments. In this landscape, new prognostic tools for fine risk stratification are eagerly sought to optimize the therapeutic path of these patients. Methods A retrospective cohort of 2,086 patients treated with CLND after a positive SN biopsy in thirteen Italian Melanoma Centers was reviewed. Overall survival (OS) was the outcome of interest; included independent variables were the following: age, gender, primary melanoma site, Breslow thickness, ulceration, sentinel node tumor burden (SNTB), number of positive SN, non-sentinel lymph nodes (NSN) status. Univariate and multivariate survival analyses were performed using the Cox proportional hazard regression model. Results The 3-year, 5-year and 10-year OS rates were 79%, 70% and 54%, respectively. At univariate analysis, all variables, except for primary melanoma body site, were found to be statistically significant prognostic factors. Multivariate Cox regression analysis indicated that older age (P &lt; 0.0001), male gender (P = 0.04), increasing Breslow thickness (P &lt; 0.0001), presence of ulceration (P = 0.004), SNTB size (P &lt; 0.0001) and metastatic NSN (P &lt; 0.0001) were independent negative predictors of OS. Conclusion The above results were utilized to build a nomogram in order to ease the practical implementation of our prognostic model, which might improve treatment personalization

    Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b

    Get PDF
    In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels. Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma

    High Levels of Exosomes Expressing CD63 and Caveolin-1 in Plasma of Melanoma Patients

    Get PDF
    BACKGROUND: Metastatic melanoma is an untreatable cancer lacking reliable and non-invasive markers of disease progression. Exosomes are small vesicles secreted by normal as well as tumor cells. Human tumor-derived exosomes are involved in malignant progression and we evaluated the presence of exosomes in plasma of melanoma patients as a potential tool for cancer screening and follow-up. METHODOLOGY/PRINCIPAL FINDINGS: We designed an in-house sandwich ELISA (Exotest) to capture and quantify exosomes in plasma based on expression of housekeeping proteins (CD63 and Rab-5b) and a tumor-associated marker (caveolin-1). Western blot and flow cytometry analysis of exosomes were used to confirm the Exotest-based findings. The Exotest allowed sensitive detection and quantification of exosomes purified from human tumor cell culture supernatants and plasma from SCID mice engrafted with human melanoma. Plasma levels of exosomes in melanoma-engrafted SCID mice correlated to tumor size. We evaluated the levels of plasma exosomes expressing CD63 and caveolin-1 in melanoma patients (n = 90) and healthy donors (n = 58). Consistently, plasma exosomes expressing CD63 (504+/-315) or caveolin-1 (619+/-310) were significantly increased in melanoma patients as compared to healthy donors (223+/-125 and 228+/-102, respectively). While the Exotest for CD63+ plasma exosomes had limited sensitivity (43%) the Exotest for detection of caveolin-1+ plasma exosomes showed a higher sensitivity (68%). Moreover, caveolin-1+ plasma exosomes were significantly increased with respect to CD63+ exosomes in the patients group. CONCLUSIONS/SIGNIFICANCE: We describe a new non-invasive assay allowing detection and quantification of human exosomes in plasma of melanoma patients. Our results suggest that the Exotest for detection of plasma exosomes carrying tumor-associated antigens may represent a novel tool for clinical management of cancer patients

    Factors Affecting Sentinel Node Metastasis in Thin (T1) Cutaneous Melanomas: Development and External Validation of a Predictive Nomogram

    Get PDF
    PURPOSE Thin melanomas (T1; ≤ 1 mm) constitute 70% of newly diagnosed cutaneous melanomas. Regional node metastasis determined by sentinel node biopsy (SNB) is an important prognostic factor for T1 melanoma. However, current melanoma guidelines do not provide clear indications on when to perform SNB in T1 disease and stress an individualized approach to SNB that considers all clinicopathologic risk factors. We aimed to identify determinants of sentinel node (SN) status for incorporation into an externally validated nomogram to better select patients with T1 disease for SNB. PATIENTS AND METHODS The development cohort comprised 3,666 patients with T1 disease consecutively treated at the Istituto Nazionale Tumori (Milan, Italy) between 2001 and 2018; 4,227 patients with T1 disease treated at 13 other European centers over the same period formed the validation cohort. A random forest procedure was applied to the development data set to select characteristics associated with SN status for inclusion in a multiple binary logistic model from which a nomogram was elaborated. Decision curve analyses assessed the clinical utility of the nomogram. RESULTS Of patients in the development cohort, 1,635 underwent SNB; 108 patients (6.6%) were SN positive. By univariable analysis, age, growth phase, Breslow thickness, ulceration, mitotic rate, regression, and lymphovascular invasion were significantly associated with SN status. The random forest procedure selected 6 variables (not growth phase) for inclusion in the logistic model and nomogram. The nomogram proved well calibrated and had good discriminative ability in both cohorts. Decision curve analyses revealed the superior net benefit of the nomogram compared with each individual variable included in it as well as with variables suggested by current guidelines. CONCLUSION We propose the nomogram as a decision aid in all patients with T1 melanoma being considered for SNB
    • …
    corecore