838 research outputs found
Differential activation of anti-erythrocyte and anti-DNA autoreactive B lymphocytes by the Yaa mutation
An as-yet-unidentified mutation, Y-linked autoimmune acceleration (Yaa), is responsible for the accelerated development of lupus-like autoimmune syndrome in mice. In view of a possible role for Yaa as a positive regulator of BCR signaling, we have explored whether the expression of the Yaa mutation affects the development and activation of transgenic autoreactive B cells expressing either 4C8 IgM anti-RBC or Sp6 IgM anti-DNA. In this study, we show that the expression of the Yaa mutation induced a lethal form of autoimmune hemolytic anemia in 4C8 transgenic C57BL/6 mice, likely as a result of activation of 4C8 anti-RBC autoreactive B cells early in life. This was further supported, although indirectly, by increased T cell-independent IgM production in spleens of nontransgenic C57BL/6 mice bearing the Yaa mutation. In contrast, Yaa failed to induce activation of Sp6 anti-DNA autoreactive B cells, consistent with a lack of increased IgM anti-DNA production in nontransgenic C57BL/6 Yaa mice. Our results suggest that Yaa can activate autoreactive B cells in a BCR-dependent manner, related to differences in the form and nature of autoantigens
Clinical Performance of an Automated Reader in Interpreting Malaria Rapid Diagnostic Tests in Tanzania.
Parasitological confirmation of malaria is now recommended in all febrile patients by the World Health Organization (WHO) to reduce inappropriate use of anti-malarial drugs. Widespread implementation of rapid diagnostic tests (RDTs) is regarded as an effective strategy to achieve this goal. However, the quality of diagnosis provided by RDTs in remote rural dispensaries and health centres is not ideal. Feasible RDT quality control programmes in these settings are challenging. Collection of information regarding diagnostic events is also very deficient in low-resource countries. A prospective cohort of consecutive patients aged more than one year from both genders, seeking routine care for febrile episodes at dispensaries located in the Bagamoyo district of Tanzania, were enrolled into the study after signing an informed consent form. Blood samples were taken for thick blood smear (TBS) microscopic examination and malaria RDT (SD Bioline Malaria Antigen Pf/PanTM (SD RDT)). RDT results were interpreted by both visual interpretation and DekiReaderTM device. Results of visual interpretation were used for case management purposes. Microscopy was considered the "gold standard test" to assess the sensitivity and specificity of the DekiReader interpretation and to compare it to visual interpretation. In total, 1,346 febrile subjects were included in the final analysis. The SD RDT, when used in conjunction with the DekiReader and upon visual interpretation, had sensitivities of 95.3% (95% CI, 90.6-97.7) and 94.7% (95% CI, 89.8--97.3) respectively, and specificities of 94.6% (95% CI, 93.5--96.1) and 95.6% (95% CI, 94.2--96.6), respectively to gold standard. There was a high percentage of overall agreement between the two methods of interpretation. The sensitivity and specificity of the DekiReader in interpretation of SD RDTs were comparable to previous reports and showed high agreement to visual interpretation (>98%). The results of the study reflect the situation in real practice and show good performance characteristics of DekiReader on interpreting malaria RDTs in the hands of local laboratory technicians. They also suggest that a system like this could provide great benefits to the health care system. Further studies to look at ease of use by community health workers, and cost benefit of the system are warranted
A protective role for the Lectin CD169/Siglec-1 against a pathogenic murine retrovirus
Lymph- and blood-borne retroviruses exploit CD169/Siglec-1-mediated capture by subcapsular sinus and marginal zone metallophilic macrophages for trans-infection of permissive lymphocytes. However, the impact of CD169-mediated virus capture on retrovirus dissemination and pathogenesis in vivo is unknown. In a murine model of the splenomegaly-inducing retrovirus Friend virus complex (FVC) infection, we find that while CD169 promoted draining lymph node infection, it limited systemic spread to the spleen. At the spleen, CD169-expressing macrophages captured incoming blood-borne retroviruses and limited their spread to the erythroblasts in the red pulp where FVC manifests its pathogenesis. CD169-mediated retroviral capture activated conventional dendritic cells 1 (cDC1s) and promoted cytotoxic CD8+ T cell responses, resulting in efficient clearing of FVC-infected cells. Accordingly, CD169 blockade led to higher viral loads and accelerated death in susceptible mouse strains. Thus, CD169 plays a protective role during FVC pathogenesis by reducing viral dissemination to erythroblasts and eliciting an effective cytotoxic T lymphocyte response via cDC1s
Membrane-Bound TNF Induces Protective Immune Responses to M. bovis BCG Infection: Regulation of memTNF and TNF Receptors Comparing Two memTNF Molecules
Several activities of the transmembrane form of TNF (memTNF) in immune responses to intracellular bacterial infection have been shown to be different from those exerted by soluble TNF. Evidence is based largely on studies in transgenic mice expressing memTNF, but precise cellular mechanisms are not well defined and the importance of TNF receptor regulation is unknown. In addition, memTNF activities are defined for a particular modification of the extracellular domain of TNF but a direct comparison of different mutant memTNF molecules has not been done in vivo
Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics
Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz infected. Together, these results suggest that the decline of the Kalande community was caused, at least in part, by high levels of SIVcpz infection. However, population extinction is not an inevitable consequence of SIVcpz infection, but depends on additional variables, such as migration, that promote survival. These findings are consistent with the uneven distribution of SIVcpz throughout central Africa and explain how chimpanzees in Gombe and elsewhere can be at equipoise with this pathogen
Heavy-light decay topologies as a new strategy to discover a heavy gluon
We study the collider phenomenology of the lightest Kaluza-Klein excitation
of the gluon, G*, in theories with a warped extra dimension. We do so by means
of a two-site effective lagrangian which includes only the lowest-lying spin-1
and spin-1/2 resonances. We point out the importance of the decays of G* to one
SM plus one heavy fermion, that were overlooked in the previous literature. It
turns out that, when kinematically allowed, such heavy-light decays are
powerful channels for discovering the G*. In particular, we present a
parton-level Montecarlo analysis of the final state Wtb that follows from the
decay of G* to one SM top or bottom quark plus its heavy partner. We find that
at \sqrt{s} = 7 TeV and with 10 fb^{-1} of integrated luminosity, the LHC can
discover a KK gluon with mass in the range M_{G*} = (1.8 - 2.2) TeV if its
coupling to a pair of light quarks is g_{G*qqbar} = (0.2-0.5) g_3. The same
process is also competitive for the discovery of the top and bottom partners as
well. We find, for example, that the LHC at \sqrt{s} = 7 TeV can discover a 1
TeV KK bottom quark with an integrated luminosity of (5.3 - 0.61) fb^{-1} for
g_{G*qqbar} = (0.2-0.5) g_3.Comment: 36 pages, 13 figures. v2: a few typos corrected, comments added,
version published in JHE
The Role of Innate APOBEC3G and Adaptive AID Immune Responses in HLA-HIV/SIV Immunized SHIV Infected Macaques
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
New Higgs Production Mechanism in Composite Higgs Models
Composite Higgs models are only now starting to be probed at the Large Hadron
Collider by Higgs searches. We point out that new resonances, abundant in these
models, can mediate new production mechanisms for the composite Higgs. The new
channels involve the exchange of a massive color octet and single production of
new fermion resonances with subsequent decays into the Higgs and a Standard
Model quark. The sizable cross section and very distinctive kinematics allow
for a very clean extraction of the signal over the background with high
statistical significance. Heavy gluon masses up to 2.8 TeV can be probed with
data collected during 2012 and up to 5 TeV after the energy upgrade to
TeV.Comment: 27 pages, 22 figures. V2: typos corrected, matches published versio
Tetraspanin (TSP-17) Protects Dopaminergic Neurons against 6-OHDA-Induced Neurodegeneration in <i>C. elegans</i>
Parkinson's disease (PD), the second most prevalent neurodegenerative disease after Alzheimer's disease, is linked to the gradual loss of dopaminergic neurons in the substantia nigra. Disease loci causing hereditary forms of PD are known, but most cases are attributable to a combination of genetic and environmental risk factors. Increased incidence of PD is associated with rural living and pesticide exposure, and dopaminergic neurodegeneration can be triggered by neurotoxins such as 6-hydroxydopamine (6-OHDA). In C. elegans, this drug is taken up by the presynaptic dopamine reuptake transporter (DAT-1) and causes selective death of the eight dopaminergic neurons of the adult hermaphrodite. Using a forward genetic approach to find genes that protect against 6-OHDA-mediated neurodegeneration, we identified tsp-17, which encodes a member of the tetraspanin family of membrane proteins. We show that TSP-17 is expressed in dopaminergic neurons and provide genetic, pharmacological and biochemical evidence that it inhibits DAT-1, thus leading to increased 6-OHDA uptake in tsp-17 loss-of-function mutants. TSP-17 also protects against toxicity conferred by excessive intracellular dopamine. We provide genetic and biochemical evidence that TSP-17 acts partly via the DOP-2 dopamine receptor to negatively regulate DAT-1. tsp-17 mutants also have subtle behavioral phenotypes, some of which are conferred by aberrant dopamine signaling. Incubating mutant worms in liquid medium leads to swimming-induced paralysis. In the L1 larval stage, this phenotype is linked to lethality and cannot be rescued by a dop-3 null mutant. In contrast, mild paralysis occurring in the L4 larval stage is suppressed by dop-3, suggesting defects in dopaminergic signaling. In summary, we show that TSP-17 protects against neurodegeneration and has a role in modulating behaviors linked to dopamine signaling
- …