21 research outputs found

    Contrasting The Culture of Polyamory and Monogamy

    Get PDF
    As families get busier and become extended through marriage, adoption, and mutual commitments, people struggle to describe their relationships in familiar ways that gives them legitimacy as they expand out of the nuclear family model. The idea that Monogamy or Polyamory is the best form for relationships to take is just as an absurd notion as attempting to hold people to a monocultural idea of morality on these matters. Not educating people to understand and interact with each other through the diverse forms of family and relationships is causing a lot of pain and wrongly isolating many people. Regardless of the form a person chooses to enter into for a relationship, the person or people who make up the relationship play a large role in the quality and the success of the relationship

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Inertio-elastic focusing of bioparticles in microchannels at high throughput

    Get PDF
    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles in a microchannel at extremely high flow rates. We show that on addition of micromolar concentrations of hyaluronic acid, the resulting fluid viscoelasticity can be used to control the focal position of particles at Reynolds numbers up to Re≈10,000 with corresponding flow rates and particle velocities up to 50 ml min[superscript −1] and 130 m s[superscript −1]. This study explores a previously unattained regime of inertio-elastic fluid flow and demonstrates bioparticle focusing at flow rates that are the highest yet achieved.National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 BioMicroElectroMechanical Systems Resource Center)National Institute for Biomedical Imaging and Bioengineering (U.S.) (P41 EB002503)National Science Foundation (U.S.). Graduate Research FellowshipUnited States. Army Research Office (Institute for Collaborative Biotechnologies Grant W911NF-09-0001

    The Illusion of Owning a Third Arm

    Get PDF
    Could it be possible that, in the not-so-distant future, we will be able to reshape the human body so as to have extra limbs? A third arm helping us out with the weekly shopping in the local grocery store, or an extra artificial limb assisting a paralysed person? Here we report a perceptual illusion in which a rubber right hand, placed beside the real hand in full view of the participant, is perceived as a supernumerary limb belonging to the participant's own body. This effect was supported by questionnaire data in conjunction with physiological evidence obtained from skin conductance responses when physically threatening either the rubber hand or the real one. In four well-controlled experiments, we demonstrate the minimal required conditions for the elicitation of this “supernumerary hand illusion”. In the fifth, and final experiment, we show that the illusion reported here is qualitatively different from the traditional rubber hand illusion as it is characterised by less disownership of the real hand and a stronger feeling of having two right hands. These results suggest that the artificial hand ‘borrows’ some of the multisensory processes that represent the real hand, leading to duplication of touch and ownership of two right arms. This work represents a major advance because it challenges the traditional view of the gross morphology of the human body as a fundamental constraint on what we can come to experience as our physical self, by showing that the body representation can easily be updated to incorporate an additional limb

    Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy

    Get PDF
    [EN] Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002. Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily. However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and recirculation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events.A.W. and S.F.E. were supported by grant BFU2012-30805 from the Spanish Secretaria de Estado de Investigacion, Desarrollo e Innovacion and by a grant 22371 from the John Templeton Foundation. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Davino, S.; Willemsen, A.; Panno. Stefano; Davino, M.; Catara, A.; Elena Fito, SF.; Rubio, L. (2013). Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS ONE. 8:66700-66700. doi:10.1371/journal.pone.0066700S66700667008Domingo, E., & Holland, J. J. (1997). RNA VIRUS MUTATIONS AND FITNESS FOR SURVIVAL. Annual Review of Microbiology, 51(1), 151-178. doi:10.1146/annurev.micro.51.1.151Grenfell, B. T. (2004). Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 303(5656), 327-332. doi:10.1126/science.1090727Moya, A., Holmes, E. C., & González-Candelas, F. (2004). The population genetics and evolutionary epidemiology of RNA viruses. Nature Reviews Microbiology, 2(4), 279-288. doi:10.1038/nrmicro863Gray, R. R., Tatem, A. J., Lamers, S., Hou, W., Laeyendecker, O., Serwadda, D., … Salemi, M. (2009). Spatial phylodynamics of HIV-1 epidemic emergence in east Africa. AIDS, 23(14), F9-F17. doi:10.1097/qad.0b013e32832faf61Holmes, E. C. (2008). Evolutionary History and Phylogeography of Human Viruses. Annual Review of Microbiology, 62(1), 307-328. doi:10.1146/annurev.micro.62.081307.162912Pybus, O. G., Suchard, M. A., Lemey, P., Bernardin, F. J., Rambaut, A., Crawford, F. W., … Delwart, E. L. (2012). Unifying the spatial epidemiology and molecular evolution of emerging epidemics. Proceedings of the National Academy of Sciences, 109(37), 15066-15071. doi:10.1073/pnas.1206598109Talbi, C., Lemey, P., Suchard, M. A., Abdelatif, E., Elharrak, M., Jalal, N., … Bourhy, H. (2010). Phylodynamics and Human-Mediated Dispersal of a Zoonotic Virus. PLoS Pathogens, 6(10), e1001166. doi:10.1371/journal.ppat.1001166Vijaykrishna, D., Bahl, J., Riley, S., Duan, L., Zhang, J. X., Chen, H., … Guan, Y. (2008). Evolutionary Dynamics and Emergence of Panzootic H5N1 Influenza Viruses. PLoS Pathogens, 4(9), e1000161. doi:10.1371/journal.ppat.1000161Gómez, P., Sempere, R. N., Aranda, M. A., & Elena, S. F. (2012). Phylodynamics of Pepino mosaic virus in Spain. European Journal of Plant Pathology, 134(3), 445-449. doi:10.1007/s10658-012-0019-0Lefeuvre, P., Martin, D. P., Harkins, G., Lemey, P., Gray, A. J. A., Meredith, S., … Heydarnejad, J. (2010). The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World. PLoS Pathogens, 6(10), e1001164. doi:10.1371/journal.ppat.1001164TOMITAKA, Y., & OHSHIMA, K. (2006). A phylogeographical study of the Turnip mosaic virus population in East Asia reveals an ‘emergent’ lineage in Japan. Molecular Ecology, 15(14), 4437-4457. doi:10.1111/j.1365-294x.2006.03094.xWu, B., Blanchard-Letort, A., Liu, Y., Zhou, G., Wang, X., & Elena, S. F. (2011). Dynamics of Molecular Evolution and Phylogeography of Barley yellow dwarf virus-PAV. PLoS ONE, 6(2), e16896. doi:10.1371/journal.pone.0016896MORENO, P., AMBRÓS, S., ALBIACH-MARTÍ, M. R., GUERRI, J., & PEÑA, L. (2008). Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Molecular Plant Pathology, 9(2), 251-268. doi:10.1111/j.1364-3703.2007.00455.xTatineni, S., Robertson, C. J., Garnsey, S. M., & Dawson, W. O. (2011). A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proceedings of the National Academy of Sciences, 108(42), 17366-17371. doi:10.1073/pnas.1113227108Folimonova, S. Y. (2012). Superinfection Exclusion Is an Active Virus-Controlled Function That Requires a Specific Viral Protein. Journal of Virology, 86(10), 5554-5561. doi:10.1128/jvi.00310-12Bar-Joseph, M., Marcus, R., & Lee, R. F. (1989). The Continuous Challenge of Citrus Tristeza Virus Control. Annual Review of Phytopathology, 27(1), 291-316. doi:10.1146/annurev.py.27.090189.001451Davino, S., Rubio, L., & Davino, M. (2005). Molecular analysis suggests that recent Citrus tristeza virus outbreaks in Italy were originated by at least two independent introductions. European Journal of Plant Pathology, 111(3), 289-293. doi:10.1007/s10658-003-2815-zAlbiach-Marti, M. R., Mawassi, M., Gowda, S., Satyanarayana, T., Hilf, M. E., Shanker, S., … Dawson, W. O. (2000). Sequences of Citrus Tristeza Virus Separated in Time and Space Are Essentially Identical. Journal of Virology, 74(15), 6856-6865. doi:10.1128/jvi.74.15.6856-6865.2000Rubio, L., Ayllon, M. A., Kong, P., Fernandez, A., Polek, M., Guerri, J., … Falk, B. W. (2001). Genetic Variation of Citrus Tristeza Virus Isolates from California and Spain: Evidence for Mixed Infections and Recombination. Journal of Virology, 75(17), 8054-8062. doi:10.1128/jvi.75.17.8054-8062.2001Silva, G., Marques, N., & Nolasco, G. (2011). The evolutionary rate of citrus tristeza virus ranks among the rates of the slowest RNA viruses. Journal of General Virology, 93(2), 419-429. doi:10.1099/vir.0.036574-0Mawassi, M., Mietkiewska, E., Gofman, R., Yang, G., & Bar-Joseph, M. (1996). Unusual Sequence Relationships Between Two Isolates of Citrus Tristeza Virus. Journal of General Virology, 77(9), 2359-2364. doi:10.1099/0022-1317-77-9-2359Vives, M. C., Dawson, W. O., Flores, R., L√≥pez, C., Albiach-Mart√≠, M. R., Rubio, L., … Moreno, P. (1999). The complete genome sequence of the major component of a mild citrus tristeza virus isolate. Journal of General Virology, 80(3), 811-816. doi:10.1099/0022-1317-80-3-811Martín, S., Elena, S. F., Guerri, J., Moreno, P., Sambade, A., Rubio, L., … Vives, M. C. (2009). Contribution of recombination and selection to molecular evolution of Citrus tristeza virus. Journal of General Virology, 90(6), 1527-1538. doi:10.1099/vir.0.008193-0Vives, M. C., Rubio, L., Sambade, A., Mirkov, T. E., Moreno, P., & Guerri, J. (2005). Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza virus isolate. Virology, 331(2), 232-237. doi:10.1016/j.virol.2004.10.037D’Urso, F., Sambade, A., Moya, A., Guerri, J., & Moreno, P. (2003). Variation of haplotype distributions of two genomic regions of Citrus tristeza virus populations from eastern Spain. Molecular Ecology, 12(2), 517-526. doi:10.1046/j.1365-294x.2000.01747.xSambade, A., Rubio, L., Garnsey, S. M., Costa, N., Muller, G. W., Peyrou, M., … Moreno, P. (2002). Comparison of viral RNA populations of pathogenically distinct isolates of Citrus tristeza virus : application to monitoring cross-protection. Plant Pathology, 51(3), 257-265. doi:10.1046/j.1365-3059.2002.00720.xReed, J. C., Kasschau, K. D., Prokhnevsky, A. I., Gopinath, K., Pogue, G. P., Carrington, J. C., & Dolja, V. V. (2003). Suppressor of RNA silencing encoded by Beet yellows virus. Virology, 306(2), 203-209. doi:10.1016/s0042-6822(02)00051-xFolimonova, S. Y., Robertson, C. J., Shilts, T., Folimonov, A. S., Hilf, M. E., Garnsey, S. M., & Dawson, W. O. (2009). Infection with Strains of Citrus Tristeza Virus Does Not Exclude Superinfection by Other Strains of the Virus. Journal of Virology, 84(3), 1314-1325. doi:10.1128/jvi.02075-09Kong, P., Rubio, L., Polek, M., & Falk, B. W. (2000). Virus Genes, 21(3), 139-145. doi:10.1023/a:1008198311398Powell, C. A., Pelosi, R. R., Rundell, P. A., & Cohen, M. (2003). Breakdown of Cross-Protection of Grapefruit from Decline-Inducing Isolates of Citrus tristeza virus Following Introduction of the Brown Citrus Aphid. Plant Disease, 87(9), 1116-1118. doi:10.1094/pdis.2003.87.9.1116Roistacher C, Dodds J. (1993) Failure of 100 mild Citrus tristeza virus isolates from california to cross protect against a challenge by severe sweet orange stem pitting isolates. Proc 12th Conf IOCV: 100–107.Ayllón, M. A., Rubio, L., Sentandreu, V., Moya, A., Guerri, J., & Moreno, P. (2006). Variations in Two Gene Sequences of Citrus Tristeza Virus after Host Passage. Virus Genes, 32(2), 119-128. doi:10.1007/s11262-005-6866-4Ayllón, M. A., Rubio, L., Moya, A., Guerri, J., & Moreno, P. (1999). The Haplotype Distribution of Two Genes of Citrus Tristeza Virus Is Altered after Host Change or Aphid Transmission. Virology, 255(1), 32-39. doi:10.1006/viro.1998.9566Sentandreu, V., Castro, J. A., Ayllón, M. A., Rubio, L., Guerri, J., González-Candelas, F., … Moya, A. (2005). Evolutionary analysis of genetic variation observed in citrus tristeza virus (CTV) after host passage. Archives of Virology, 151(5), 875-894. doi:10.1007/s00705-005-0683-xMatos, L. A., Hilf, M. E., Cayetano, X. A., Feliz, A. O., Harper, S. J., & Folimonova, S. Y. (2013). Dramatic Change in Citrus tristeza virus Populations in the Dominican Republic. Plant Disease, 97(3), 339-345. doi:10.1094/pdis-05-12-0421-reDavino, S., Davino, M., Sambade, A., Guardo, M., & Caruso, A. (2003). The First Citrus tristeza virus Outbreak Found in a Relevant Citrus Producing Area of Sicily, Italy. Plant Disease, 87(3), 314-314. doi:10.1094/pdis.2003.87.3.314aRUBIO, L., AYLLONl, M. A., GUERRI, J., PAPPU, H., NIBLETT, C., & MORENO, P. (1996). Differentiation of citrus tristeza closterovirus (CTV) isolates by single-strand conformation polymorphism analysis of the coat protein gene. Annals of Applied Biology, 129(3), 479-489. doi:10.1111/j.1744-7348.1996.tb05770.xLarkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121Kosakovsky Pond, S. L., Posada, D., Gravenor, M. B., Woelk, C. H., & Frost, S. D. W. (2006). GARD: a genetic algorithm for recombination detection. Bioinformatics, 22(24), 3096-3098. doi:10.1093/bioinformatics/btl474Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: a flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462-2463. doi:10.1093/bioinformatics/btq467Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451-1452. doi:10.1093/bioinformatics/btp187Kimura M. (1985) The neutral theory of molecular evolution. Cambridge Univ Pr.Weir, B. S., & Cockerham, C. C. (1984). Estimating F-Statistics for the Analysis of Population Structure. Evolution, 38(6), 1358. doi:10.2307/2408641Pond, S. L. K., & Frost, S. D. W. (2005). Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics, 21(10), 2531-2533. doi:10.1093/bioinformatics/bti320Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7(1), 214. doi:10.1186/1471-2148-7-214Bielejec, F., Rambaut, A., Suchard, M. A., & Lemey, P. (2011). SPREAD: spatial phylogenetic reconstruction of evolutionary dynamics. Bioinformatics, 27(20), 2910-2912. doi:10.1093/bioinformatics/btr481Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22(21), 2688-2690. doi:10.1093/bioinformatics/btl446Ott M, Zola J, Stamatakis A, Aluru S. (2007) Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. Proceedings of the 19th ACM/IEEE conference on Supercomputing. Article No. 4.Shimodaira, H., & Hasegawa, M. (1999). Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16(8), 1114-1116. doi:10.1093/oxfordjournals.molbev.a026201Soria-Carrasco, V., Talavera, G., Igea, J., & Castresana, J. (2007). The K tree score: quantification of differences in the relative branch length and topology of phylogenetic trees. Bioinformatics, 23(21), 2954-2956. doi:10.1093/bioinformatics/btm466Puigbo, P., Garcia-Vallve, S., & McInerney, J. O. (2007). TOPD/FMTS: a new software to compare phylogenetic trees. Bioinformatics, 23(12), 1556-1558. doi:10.1093/bioinformatics/btm13

    November URI Community Diversity Project 2010

    Get PDF
    November is National Novel Writing Month. For the first time at the University of Rhode Island November was a month for the URI community to share their stories, poems, art, and photos with the world. The Writing to Model Diversity project intends to connect individuals across cultural boundaries and borders by sharing the stories and experiences that challenge our everyday experiences and the dreams of the future. Built on the efforts of the World Voice series, URI presents a book that shares the stories and culture of the students, faculty, staff, and community members who embrace the idea of becoming global citizens. We recognize that it is up each person to be an advocate that passes on the history of URI and the hopes to the next generation

    Optimization of multiplane ?PIV for wall shear stress and wall topography characterization

    Get PDF
    Multiplane ?PIV can be utilized to determine the wall shear stress and wall topology from the measured flow over a structured surface. A theoretical model was developed to predict the measurement error for the surface topography and shear stress, based on a theoretical analysis of the precision in PIV measurements. The main parameters that affect the accuracy of the measurement are identified. The effect of different parameter settings is studied by means of Monte Carlo simulations, and the results are compared with an experimental test case. The results are used to determine the recommended parameter settings for this measurement approach.Process and EnergyAerospace Engineerin
    corecore