20 research outputs found

    On the nature of different Fe sites on Fe-containing micro and mesoporous materials and their catalytic role in the abatement of nitrogen oxides from exhaust gases

    Get PDF
    Gegenstand der Untersuchungen war die Reduktion von Stickoxiden (NOx und N2O) an verschiedenartig präparierten Eisenkatalysatoren (Fe-MF, Fe-beta, Fe-SBA-15). Die Katalysatoren wurden nach Synthese, Kalzinierung und Katalyse mittels EPR und UV/VIS-DRS charakterisiert, und darüber hinaus auch in-situ während des Kalzinierens. Isolierte Eisenspezies aggregieren im Verlauf der Kalzinierung bei 873 K. Sowohl höhere Heizraten beim Kalziniervorgang, als auch ein höheres Si/Al-Verhältnis des Trägermaterials verstärken die Neigung zur Aggregatbildung leicht. Die Verwendung des Katalysators für die SCR von NO führt zu weiterem Wachstum und zur Restrukturierung der FexOy-Cluster. Die Eisenkatalysatoren wurden weiterhin mittels in-situ Methoden (EPR, UV/VIS-DRS, FTIR) untersucht während der SCR von NO durch NH3 und Isobutan, der SCR von N2O mit CO, und im Strom der entsprechenden reinen Eduktgase. Die Ergebnisse korrelieren mit dem katalytischen Verhalten der Materialien. Verschiedene Fe3+-Spezies, welche sich durch ein unterschiedliches Redoxverhalten auszeichnen, wurden identifiziert. UV/VIS-Messungen erlauben die Schlußfolgerung, daß isolierte, oktaedrisch koordinierte Fe3+?Spezies leichter zu reduzieren sind als tetradrisch koordinierte. Im Gegensatz zu isoliertem Fe3+ lassen sich FexOx-Cluster leichter oxidieren als reduzieren, und verbleiben daher unter Reaktionsbedingungen trivalent. Durch ihr hohes Oxidationspotential kommt es, vor allem für die Reaktion mit Isobutan, zur unerwünschten Totaloxidation des Reduktanden. Der Anteil isolierter Fe3+ Spezies korreliert mit der Aktivität der Katalysatoren für die SCR von NO und N2O. Weiterhin hängt zumindest für die Reaktion zwischen N2O und CO der Reaktionsmechanismus von der Art der vorliegenden Eisenspezies ab: an isolierten Plätzen erfolgt die Reduktion des N2O an dem an Fe3+ gebundenen CO. An FexOy-Clustern hingegen läuft die Reaktion als Redoxprozeß (Fe3+ / Fe2+) unter Bildung eines radikalischen Intermediates O-. Der Einfluß der Porengeometrie des Trägermaterials auf die katalytische Aktivität wurde an Katalysatoren mit ähnlichem Eisengehalt und ähnlicher Art und Verteilung der Eisenspezies studiert (Fe-MFI, Fe-SBA-15). Die drastisch höhere Aktivität von Fe-MFI belegt, daß die Lokalisierung der aktiven Komponente in einer Pore mit passender Geometrie (Größe und Struktur) essentiell für die katalytischen Eigenschaften ist. Als weitere, die Aktivität stark beeinflussen Größe, wurde für die Reaktion von NO mit Ammoniak und auch mit Isobutan die Azidität identifiziert, die jedoch für die katalytische Zersetzung oder Reduktion mit N2O keine Rolle spielt.The reduction of nitrogen oxides (NOx and N2O) was investigated over Fe-catalysts (Fe-MFI, Fe-beta and Fe-SBA-15) which were prepared by different methods have been analyzed by EPR and UV/VIS-DRS ex situ after synthesis, calcination and use in catalysis as well as in situ during calcination. It was found that aggregated species are formed at the expense of isolated Fe species upon calcination at 873 K, and that aggregate formation is slightly favored by calcination with higher heating rates as well as by high Si/Al ratio of the support. Use in SCR of NO leads to further growth and restructuring of FexOy clusters. These Fe-catalysts were studied by in situ EPR, in situ UV/VIS-DRS and in situ FT-IR spectroscopy during SCR of NO with NH3 or isobutane and during SCR of N2O with CO as well as during interaction with single feed components. The results were related to the catalytic behaviour. Different types of isolated Fe3+ sites with different reducibility were identified. Based on FT-IR results which revealed that NO reacts preferably with trivalent Fe, it is concluded that Fe3+ ions reduced under reaction conditions to Fe2+ do probably not contribute to catalytic activity. In general, the degree of steady-state Fe site reduction during NH3-SCR is markedly lower than during isobutane-SCR. This might be the reason for the lower activity of Fe-catalysts in the latter reaction. UV/VIS-DRS results suggest that isolated Fe3+ in octahedral coordination is easier reduced than tetrahedral Fe3+. In contrast to isolated Fe3+ species, FexOy clusters are much faster reoxidized than reduced and, thus, remain essentially trivalent under reaction conditions. Due to their higher oxidation potential, they cause undesired total oxidation of the reductant being much more severe in the case of isobutane. A correlation was found between the fraction of isolated Fe+3 sites in the catalysts and their activity for SCR of NO and N2O. The reaction mechanism of SCR of N2O with CO is Fe site dependent. Over isolated Fe sites, the reduction of N2O occurs via coordinated CO species on Fe3+ sites. The reaction over FexOy sites proceeds via a redox Fe3+/Fe2+ process with intermediate formation of O- radicals. The effect of pore geometry of the support on the catalytic activity was studied by comparing catalytic performance of Fe-MFI and Fe-SBA-15 which contain similar iron content and show similar nature and distribution of Fe species as evidenced by UV/VIS-DRS and EPR. Fe-MFI revealed to be much more active than Fe-SBA-15 in all reactions studied. This clearly illustrates that the confinement of the iron species in pores of suitable geometry (structure and size) is essential to originate their remarkable catalytic properties. Acidity is essential for SCR of NO with NH3 or isobutane but it is not mandatory for direct decomposition or SCR of N2O

    New Synthesis of ZSM‑5 from High-Silica Kaolinite and Its Use in Vapor-Phase Conversion of 1‑Phenylethanol to Styrene

    No full text
    The present work describes the utilization of high-silica kaolinite for the synthesis of zeolite ZSM-5 with different SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratios. The new synthetic method, which involves acid–base activation of metakaolinite, is most suitable for the production of high-silica zeolites. The process starts with the conversion of kaolinite to metakaolinite, which is then dealuminated with sulfuric acid with varying concentrations. A relationship between the acid concentration and the SiO<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub> ratio in the final product was established. The dealuminated kaolinite was hydrothermally treated with alkali to obtain phase-pure ZSM-5. The zeolites were characterized by XRF, XRD, SEM, and N<sub>2</sub> physisorption. The sodium form of the zeolite was converted to the acid form for application in catalytic dehydration of alcohols. The catalytic activity of the zeolite was tested in the dehydration of 1-phenylethanol into styrene. The results reveal a selective formation of styrene in high yield that reaches up to 95%

    Chromium-induced deactivation of a commercial honeycomb noble metal-based CO oxidation catalyst

    No full text
    A commercially available honeycomb CO oxidation catalyst used to control the exhaust of a solid oxide fuel cell (SOFC) based power system has been characterized after prolonged use. X-ray fluorescence (XRF), X-ray diffraction (XRD), Raman spectroscopy, N2 physisorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were employed to determine the phase composition, the morphology and the chemical state of the various components. Besides sintering of the active phase, deactivation was found to occur mainly as the result of the deposition of chromium-containing species on the catalyst washcoat. These fouling species mainly appeared as highly crystalline Cr2O3 particles and could still maintain acceptable CO oxidation activity under dry atmosphere. However, the formation of surface chromium oxyhydroxide species was found to occur in the presence of water vapor, leading to significant catalyst deactivation

    The Origin of the Catalytic Activity of a Metal Hydride in CO2 Reduction

    No full text
    Atomic hydrogen on the surface of a metal with high hydrogen solubility is of particular interest for the hydrogenation of carbon dioxide. In a mixture of hydrogen and carbon dioxide, methane was markedly formed on the metal hydride ZrCoHx in the course of the hydrogen desorption and not on the pristine intermetallic. The surface analysis was performed by means of time-of-flight secondary ion mass spectroscopy and near-ambient pressure X-ray photoelectron spectroscopy, for the in situ analysis. The aim was to elucidate the origin of the catalytic activity of the metal hydride. Since at the initial stage the dissociation of impinging hydrogen molecules is hindered by a high activation barrier of the oxidised surface, the atomic hydrogen flux from the metal hydride is crucial for the reduction of carbon dioxide and surface oxides at interfacial sites

    Methane abatement under stoichiometric conditions on perovskite-supported palladium catalysts prepared by flame spray synthesis

    No full text
    Three-way catalysts (TWC) are the key technology to reduce emissions of pollutants from stoichiometric engines. Perovskite-type catalysts of general formula ABO3±δ (A = La, Y; B = Mn, Fe) containing 2 wt% Pd were produced by flame spray synthesis (FSS) using metal nitrate precursors. The structural properties of the catalysts were characterized by X-ray diffraction (XRD), surface area determination (BET) and transmission electron microscopy (TEM). Crystalline metal oxide nano-particles of 20 nm average size were accompanied by minority La2O3 and Y2O3 phases. The state of Pd in the catalysts was characterized using X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge spectroscopy (XANES) and CO adsorption by infrared spectroscopy. Metallic Pd coexisted with Pd in oxidation state +2 and higher on all fresh samples. TEM confirmed the presence of dispersed Pd particles 2-5 nm in diameter. Therefore, under the chosen synthesis conditions, FSS provides supported palladium nano-particles rather than a solid solution. PdO was the dominant Pd species after calcination at 700 °C. The TWC activity was tested in a simulated stoichiometric gas mixture comprising CH4, CO, NOx and O2. PdO in combination with YFeO3±δ exhibited the lowest temperature for CH4 oxidation (T50 = 450°C), which was ca. 100°C lower than that of the sample obtained by the conventional wet-chemical method. After cycling under reaction conditions up to 850°C, a large improvement of catalytic activity for CH4 oxidation was observed which associated with the formation of metallic Pd particles (ca. 20 nm) and the hexagonal → orthorhombic phase transition of YFeO3±δ

    The Influence of the Ammonolysis Temperature on the Photocatalytic Activity of beta-TaON

    Get PDF
    Phase-pure tantalum oxynitride (beta-TaON) powders were synthesized by thermal ammonolysis of Ta2O5 powders. X-ray diffraction revealed an enlargement of the unit cell and an increase of the crystallite size with increasing ammonolysis temperature. Scanning electron microscopy showed reduced particle sizes for beta-TaON synthesized at 800 and 900 degrees C compared to the precursor oxide. With increasing nitridation temperature the Brunauer-Emmett-Teller surface area was reduced and the nitrogen content increased. UV-Vis spectroscopy showed a bandgap energy of 2.6-2.4 eV. The highest oxygen evolution rate of 220 mu mol.g(-1).h(-1) was achieved for beta-TaON synthesized at 800 degrees C. The factors determining the photocatalytic activity of beta-TaON powders were found to be the specific surface area and defects in the beta-TaON

    Operando XANES study of simulated transient cycles on a Pd-only three-way catalyst

    No full text
    A model Pd-only three-way catalyst has been subjected to simulated driving conditions of natural gas and gasoline operation in an operando reactor cell for X-ray absorption spectroscopy that included alternated, but longer than real oscillations, rich and lean periods and a high temperature surge (850–900 °C). The X-ray absorption near edge structure (XANES) spectra indicated that metallic palladium is observed in the whole temperature range investigated (up to 900 °C) and irrespective of the air/fuel ratio. In both natural gas and gasoline cycles, the XANES data show that the PdO reduced in the rich periods cannot be restored in the lean periods. With this background, activity for methane abatement in the high temperature regime is greatly affected by the oxidation state of palladium rather than by the change of air/fuel ratio. In the case of propene oxidation, while Pd also remains predominantly in the reduced state, activity is dictated by the oxygen concentration in the feedstock. Comparison between the two hydrocarbons demonstrates that the oxidation state of Pd may be responsible for observed methane emissions under realistic operating circumstances. Moreover, the experiments demonstrate that reduced Pd may be continuously present during operation in agreement with observations on real catalytic converters. Although this may be the average oxidation state of Pd, more advanced probes are certainly necessary to capture variations of oxidation state under the fast oscillatory conditions needed to imitate real operation

    Dimensional and structural control of silica aerogel membranes for miniaturized motionless gas pumps

    No full text
    With growing public interest in portable electronics such as micro fuel cells, micro gas total analysis systems, and portable medical devices, the need for miniaturized air pumps with minimal electrical power consumption is on the rise. Thus, the development and downsizing of next-generation thermal transpiration gas pumps has been investigated intensively during the last decades. Such a system relies on a mesoporous membrane that generates a thermomolecular pressure gradient under the action of an applied temperature bias. However, the development of highly miniaturized active membrane materials with tailored porosity and optimized pumping performance remains a major challenge. Here we report a systematic study on the manufacturing of aerogel membranes using an optimized, minimal-shrinkage sol–gel process, leading to low thermal conductivity and high air conductance. This combination of properties results in superior performance for miniaturized thermomolecular air pump applications. The engineering of such aerogel membranes, which implies pore structure control and chemical surface modification, requires both chemical processing know-how and a detailed understanding of the influence of the material properties on the spatial flow rate density. Optimal pumping performance was found for devices with integrated membranes with a density of 0.062 g cm–3 and an average pore size of 142.0 nm. Benchmarking of such low-density hydrophobic active aerogel membranes gave an air flow rate density of 3.85 sccm·cm–2 at an operating temperature of 400 °C. Such a silica aerogel membrane based system has shown more than 50% higher pumping performance when compared to conventional transpiration pump membrane materials as well as the ability to withstand higher operating temperatures (up to 440 °C). This study highlights new perspectives for the development of miniaturized thermal transpiration air pumps while offering insights into the fundamentals of molecular pumping in three-dimensional open-mesoporous materials. Keywords: aerogel membrane; miniaturized gas pump; sodium silicate; low-temperature cofired ceramics; Knudsen flo
    corecore