408 research outputs found

    Fusion energy from the Moon for the twenty-first century

    Get PDF
    It is shown in this paper that the D-He-3 fusion fuel cycle is not only credible from a physics standpoint, but that its breakeven and ignition characteristics could be developed on roughly the same time schedule as the DT cycle. It was also shown that the extremely low fraction of power in neutrons, the lack of significant radioactivity in the reactants, and the potential for very high conversion efficiencies, can result in definite advantages for the D-He-3 cycle with respect to DT fusion and fission reactors in the twenty-first century. More specifically, the D-He-3 cycle can accomplish the following: (1) eliminate the need for deep geologic waste burial facilities and the wastes can qualify for Class A, near-surface land burial; (2) allow 'inherently safe' reactors to be built that, under the worst conceivable accident, cannot cause a civilian fatality or result in a significant (greater than 100 mrem) exposure to a member of the public; (3) reduce the radiation damage levels to a point where no scheduled replacement of reactor structural components is required, i.e., full reactor lifetimes (approximately 30 FPY) can be credibly claimed; (4) increase the reliability and availability of fusion reactors compared to DT systems because of the greatly reduced radioactivity, the low neutron damage, and the elimination of T breeding; and (5) greatly reduce the capital costs of fusion power plants (compared to DT systems) by as much as 50 percent and present the potential for a significant reduction on the COE. The concepts presented in this paper tie together two of the most ambitious high-technology endeavors of the twentieth century: the development of controlled thermonuclear fusion for civilian power applications and the utilization of outer space for the benefit of mankind on Earth

    Sustainable digitalization ā€ fostering the twin transformation in a transdisciplinary way

    Get PDF
    Can digitalization be designed in such a way that it does not harm the environment or promote unsustainable lifestyles? Can it even promote a green transformation? The authors of this GAIA special issue discuss how stakeholder engagement and transdisciplinary approaches can help address digitalization and sustainability in an integrated way. The special issue deepens insights into the state of knowledge on sustainable digitalization in both scientific and political discourses

    Core Outcomes and Common Data Elements in Chronic Subdural Hematoma: A Systematic Review of the Literature Focusing on Reported Outcomes.

    Get PDF
    The plethora of studies in chronic subdural hematoma (CSDH) has not resulted in the development of an evidence-based treatment strategy, largely due to heterogeneous outcome measures that preclude cross-study comparisons and guideline development. This study aimed to identify and quantify the heterogeneity of outcome measures reported in the CSDH literature and to build a case for the development of a consensus-based core outcome set. This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement and was registered with the PROSPERO international prospective register of systematic reviews (CRD42014007266). All full-text English language studies with >10 patients (prospective) or >100 patients (retrospective) published after 1990 examining clinical outcomes in CSDH were eligible for inclusion. One hundred two eligible studies were found. There were 14 (13.7%) randomized controlled trials, one single arm trial (1.0%), 25 (24.5%) cohort comparison studies, and 62 (60.8%) prospective or retrospective cohort studies. Outcome domains reported by the studies included mortality (63.8% of included studies), recurrence (94.1%), complications (48.0%), functional outcomes (40.2%), and radiological (38.2%) outcomes. There was significant heterogeneity in the definitions of the outcome measures, as evidenced by the seven different definitions of the term "recurrence," with no definition given in 19 studies. The time-points of assessment for all the outcome domains varied greatly from inpatient/hospital discharge to 18 months. This study establishes and quantifies the heterogeneity of outcome measure reporting in CSDH and builds the case for the development of a robust consensus-based core outcome set for future studies to adhere to as part of the Core Outcomes and Common Data Elements in CSDH (CODE-CSDH) project.PJH is supported by a National Institute for Health Research (NIHR) Research Professorship and the NIHR Cambridge Biomedical Research Centre

    Gasdynamic fusion propulsion system for space exploration

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76953/1/AIAA-23876-408.pd

    Imidazopurinones are markers of physiological genomic damage linked to DNA instability and glyoxalase 1-associated tumour multidrug resistance

    Get PDF
    Glyoxal and methylglyoxal are reactive dicarbonyl metabolites formed and metabolized in physiological systems. Increased exposure to these dicarbonyls is linked to mutagenesis and cytotoxicity and enhanced dicarbonyl metabolism by overexpression of glyoxalase 1 is linked to tumour multidrug resistance in cancer chemotherapy. We report herein that glycation of DNA by glyoxal and methylglyoxal produces a quantitatively important class of nucleotide adduct in physiological systemsā€”imidazopurinones. The adduct derived from methylglyoxal-3-(2ā€²-deoxyribosyl)-6,7-dihydro-6,7-dihydroxy-6/7-methylimidazo-[2,3-b]purine-9(8)one isomersā€”was the major quantitative adduct detected in mononuclear leukocytes in vivo and tumour cell lines in vitro. It was linked to frequency of DNA strand breaks and increased markedly during apoptosis induced by a cell permeable glyoxalase 1 inhibitor. Unexpectedly, the DNA content of methylglyoxal-derived imidazopurinone and oxidative marker 7,8-dihydro-8-oxo-2ā€²-deoxyguanosine were increased moderately in glyoxalase 1-linked multidrug resistant tumour cell lines. Together these findings suggest that imidazopurinones are a major type of endogenous DNA damage and glyoxalase 1 overexpression in tumour cells strives to counter increased imidazopurinone formation in tumour cells likely linked to their high glycolytic activity

    Brain tumour microstructure is associated with post-surgical cognition

    Get PDF
    Brain tumour microstructure is potentially predictive of changes following treatment to cognitive functions subserved by the functional networks in which they are embedded. To test this hypothesis, intra-tumoural microstructure was quantified from diffusion-weighted MRI to identify which tumour subregions (if any) had a greater impact on participantsā€™ cognitive recovery after surgical resection. Additionally, we studied the role of tumour microstructure in the functional interaction between the tumour and the rest of the brain. Sixteen patients (22ā€“56Ā years, 7 females) with brain tumours located in or near speech-eloquent areas of the brain were included in the analyses. Two different approaches were adopted for tumour segmentation from a multishell diffusion MRI acquisition: the first used a two-dimensional four group partition of feature space, whilst the second used data-driven clustering with Gaussian mixture modelling. For each approach, we assessed the capability of tumour microstructure to predict participantsā€™ cognitive outcomes after surgery and the strength of association between the BOLD signal of individual tumour subregions and the global BOLD signal. With both methodologies, the volumes of partially overlapped subregions within the tumour significantly predicted cognitive decline in verbal skills after surgery. We also found that these particular subregions were among those that showed greater functional interaction with the unaffected cortex. Our results indicate that tumour microstructure measured by MRI multishell diffusion is associated with cognitive recovery after surgery.</p

    Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma

    Get PDF
    Aberrant genetic and epigenetic variations drive malignant transformation and are hallmarks of cancer. Using PCR-free sample preparation we achieved the first in-depth whole genome (hydroxyl)-methylcytosine, single-base-resolution maps from a glioblastoma tumour/margin sample of a patient. Our data provide new insights into how genetic and epigenetic variations are interrelated. In the tumour, global hypermethylation with a depletion of 5-hydroxymethylcytosine was observed. The majority of single nucleotide variations were identified as cytosine-to-thymine deamination products within CpG context, where cytosine was preferentially methylated in the margin. Notably, we observe that cells neighbouring tumour cells display epigenetic alterations characteristic of the tumour itself although genetically they appear ā€œnormalā€. This shows the potential transfer of epigenetic information between cells that contributes to the intratumour heterogeneity of glioblastoma. Together, our reference (epi)-genome provides a human model system for future studies that aim to explore the link between genetic and epigenetic variations in cancer progression.Cancer Research UK 236 (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z
    • ā€¦
    corecore