134 research outputs found

    Heterozygous De Novo Truncating Mutation of Nucleolin in an ASD Individual Disrupts Its Nucleolar Localization

    Get PDF
    Nucleolin (NCL/C23; OMIM: 164035) is a major nucleolar protein that plays a critical role in multiple processes, including ribosome assembly and maturation, chromatin decondensation, and pre-rRNA transcription. Due to its diverse functions, nucleolin has frequently been implicated in pathological processes, including cancer and viral infection. We recently identified a de novo frameshifting indel mutation of NCL, p.Gly664Glufs*70, through whole-exome sequencing of autism spectrum disorder trios. Through the transfection of constructs encoding either a wild-type human nucleolin or a mutant nucleolin with the same C-terminal sequence predicted for the autism proband, and by using co-localization with the nucleophosmin (NPM; B23) protein, we have shown that the nucleolin mutation leads to mislocalization of the NCL protein from the nucleolus to the nucleoplasm. Moreover, a construct with a nonsense mutation at the same residue, p.Gly664*, shows a very similar effect on the location of the NCL protein, thus confirming the presence of a predicted nucleolar location signal in this region of the NCL protein. Real-time fluorescence recovery experiments show significant changes in the kinetics and mobility of mutant NCL protein in the nucleoplasm of HEK293Tcells. Several other studies also report de novo NCL mutations in ASD or neurodevelopmental disorders. The altered mislocalization and dynamics of mutant NCL (p.G664Glufs*70/p.G664*) may have relevance to the etiopathlogy of NCL-related ASD and other neurodevelopmental phenotypes

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    MIR137 is the key gene mediator of the syndromic obesity phenotype of patients with 1p21.3 microdeletions.

    Get PDF
    BACKGROUND: Deletions in the long arm of chromosome 1 have been described in patients with a phenotype consisting primarily of obesity, intellectual disability and autism-spectrum disorder. The minimal region of overlap comprises two genes: DPYD and MIR137. CASE PRESENTATION: We describe a 10-year-old boy with syndromic obesity who carries a novel 1p21.3 deletion overlapping the critical region with the MIR137 gene only. CONCLUSIONS: This study suggests that MIR137 is the mediator of the obesity phenotype of patients carrying 1p21.3 microdeletions

    RNA localization in neurite morphogenesis and synaptic regulation: current evidence and novel approaches

    Get PDF
    It is now generally accepted that RNA localization in the central nervous system conveys important roles both during development and in the adult brain. Of special interest is protein synthesis located at the synapse, as this potentially confers selective synaptic modification and has been implicated in the establishment of memories. However, the underlying molecular events are largely unknown. In this review, we will first discuss novel findings that highlight the role of RNA localization in neurons. We will focus on the role of RNA localization in neurotrophin signaling, axon outgrowth, dendrite and dendritic spine morphogenesis as well as in synaptic plasticity. Second, we will briefly present recent work on the role of microRNAs in translational control in dendrites and its implications for learning and memory. Finally, we discuss recent approaches to visualize RNAs in living cells and their employment for studying RNA trafficking in neurons

    Complex variations in X-ray polarization in the X-ray pulsar LS V +44 17/RX J0440.9+4431

    Get PDF
    We report on Imaging X-ray polarimetry explorer (IXPE) observations of the Be-transient X-ray pulsar LS V +44 17/RX J0440.9+4431 made at two luminosity levels during the giant outburst in January- February 2023. Considering the observed spectral variability and changes in the pulse profiles, the source was likely caught in supercritical and subcritical states with significantly different emission-region geometry, associated with the presence of accretion columns and hot spots, respectively. We focus here on the pulse-phase-resolved polarimetric analysis and find that the observed dependencies of the polarization degree and polarization angle (PA) on the pulse phase are indeed drastically different for the two observations. The observed differences, if interpreted within the framework of the rotating vector model (RVM), imply dramatic variations in the spin axis inclination, the position angle, and the magnetic colatitude by tens of degrees within the space of just a few days. We suggest that the apparent changes in the observed PA phase dependence are predominantly related to the presence of an unpulsed polarized component in addition to the polarized radiation associated with the pulsar itself. We then show that the observed PA phase dependence in both observations can be explained with a single set of RVM parameters defining the pulsar s geometry. We also suggest that the additional polarized component is likely produced by scattering of the pulsar radiation in the equatorial disk wind

    A polarimetrically oriented X-ray stare at the accreting pulsar EXO 2030+375

    Get PDF
    Accreting X-ray pulsars (XRPs) are presumed to be ideal targets for polarization measurements, as their high magnetic field strength is expected to polarize the emission up to a polarization degree of 80%. However, such expectations are being challenged by recent observations of XRPs with the Imaging X-ray Polarimeter Explorer (IXPE). Here, we report on the results of yet another XRP, namely, EXO 2030+375, observed with IXPE and contemporarily monitored with Insight-HXMT and SRG/ART-XC. In line with recent results obtained with IXPE for similar sources, an analysis of the EXO 2030+375 data returns a low polarization degree of 0%- 3% in the phase-averaged study and a variation in the range of 2%- 7% in the phase-resolved study. Using the rotating vector model, we constrained the geometry of the system and obtained a value of 60 for the magnetic obliquity. When considering the estimated pulsar inclination of 130, this also indicates that the magnetic axis swings close to the observera's line of sight. Our joint polarimetric, spectral, and timing analyses hint toward a complex accreting geometry, whereby magnetic multipoles with an asymmetric topology and gravitational light bending significantly affect the behavior of the observed source

    Apical Transport of Influenza A Virus Ribonucleoprotein Requires Rab11-positive Recycling Endosome

    Get PDF
    Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs). Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM). However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE) in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD) of Rab11 family interacting proteins (Rab11-FIPs). Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking

    The COGs (context, object, and goals) in multisensory processing

    Get PDF
    Our understanding of how perception operates in real-world environments has been substantially advanced by studying both multisensory processes and “top-down” control processes influencing sensory processing via activity from higher-order brain areas, such as attention, memory, and expectations. As the two topics have been traditionally studied separately, the mechanisms orchestrating real-world multisensory processing remain unclear. Past work has revealed that the observer’s goals gate the influence of many multisensory processes on brain and behavioural responses, whereas some other multisensory processes might occur independently of these goals. Consequently, other forms of top-down control beyond goal dependence are necessary to explain the full range of multisensory effects currently reported at the brain and the cognitive level. These forms of control include sensitivity to stimulus context as well as the detection of matches (or lack thereof) between a multisensory stimulus and categorical attributes of naturalistic objects (e.g. tools, animals). In this review we discuss and integrate the existing findings that demonstrate the importance of such goal-, object- and context-based top-down control over multisensory processing. We then put forward a few principles emerging from this literature review with respect to the mechanisms underlying multisensory processing and discuss their possible broader implications
    corecore