2,327 research outputs found

    Corrosion and wear resistance of coatings produced on AZ31 Mg alloy by plasma electrolytic oxidation in silicate-based K2TiF6 containing solution: Effect of waveform

    Get PDF
    In this research, plasma electrolytic oxidation coatings were prepared on AZ31 Mg alloy in a silicate-based solution containing K2TiF6 using bipolar and soft sparking waveforms with 10, 20, and 30% cathodic duty cycles. The coatings displayed a net-like surface morphology consisted of irregular micro-pores, micro-cracks, fused oxide particles, and a sintered structure. Due to the incorporation of TiO2 colloidal particles and the cathodic pulse repair effect, most of the micro-pores were sealed. Long-term corrosion performance of the coatings was investigated using electrochemical impedance spectroscopy during immersion in 3.5 wt.% NaCl solution up to 14 days. The coating grown by the soft sparking waveform with a 20% cathodic duty cycle having the lowest porosity (6.2%) and a sharp layer concentrated in F element at the substrate/coating interface shows the highest corrosion resistance. The friction coefficient of this coating has remained stable during the sliding even under 5 N normal load, showing relatively higher wear resistance than other coatings. The coating produced using the equivalent unipolar waveform, as the reference specimen, showed the highest friction coefficient and the lowest wear resistance despite its highest micro-hardness

    Report on advances for pediatricians in 2018: allergy, cardiology, critical care, endocrinology, hereditary metabolic diseases, gastroenterology, infectious diseases, neonatology, nutrition, respiratory tract disorders and surgery.

    Get PDF
    This review reported notable advances in pediatrics that have been published in 2018. We have highlighted progresses in allergy, cardiology, critical care, endocrinology, hereditary metabolic diseases, gastroenterology, infectious diseases, neonatology, nutrition, respiratory tract disorders and surgery. Many studies have informed on epidemiologic observations. Promising outcomes in prevention, diagnosis and treatment have been reported. We think that advances realized in 2018 can now be utilized to ameliorate patient car

    Nano-heaters: New insights on the outstanding deposition of dielectric energy on perovskite nanoparticles

    Get PDF
    It has been experimentally observed that, in some Mott nanomaterials, outstanding dielectric losses may appear at microwave frequencies, leading to a rapid increase of temperature. This often takes place in association with the insulator to metal transition (IMT) in these materials. However, when other materials with a similar structure and composition are subjected to the same intensity of microwave (MW) irradiation, the observed heating is minimal. Here we show that the electron dynamics of these materials are responsible for their different heating behaviour. More specifically, for LaCoO3 perovskite nanoparticles, the spin shifts causing the IMT are also responsible for the observed heating behaviour. Under suitable conditions, the intense absorption of MW radiation leads to extremely high heating rates, above 600 degrees per second. The insight gained from this study has been used to design a directly heated catalytic system (LaCoO3 perovskite nanoparticles on a MW-transparent cordierite monolith) capable to operate under a stable, significant solid-gas temperature gradient

    Lepton Number Violating Radiative WW Decay in Models with R-parity Violation

    Full text link
    Models with explicit R-parity violation can induce new rare radiative decay modes of the WW boson into single supersymmetric particles which also violate lepton number. We examine the rate and signature for one such decay, Wl~γW\rightarrow \tilde l\gamma, and find that such a mode will be very difficult to observe, due its small branching fraction, even if the lepton number violating coupling in the superpotential is comparable in strength to electromagnetism. This parallels a similar result obtained earlier by Hewett in the case of radiative ZZ decays.Comment: 10 pages, 2 figures(available on request), LaTex, ANL-HEP-PR-92-8

    Analysis of technical criticalities for GIS modelling an Urban noise map

    Get PDF
    This paper analyzes criticalities and strengthens of a procedure used to model the acoustic map of the vehicular traffic of an urban agglomeration. The research is based on a pilot project for the acoustic mapping of a portion of the city of Palermo (Italy). Simulations indicate that the acoustic climate was in line with expectations and with typical of large Italian cities. The most remarkable result was obtained by an increase in the number of reflections (from two to five), while the influence of the height of the building (from 9 to 18 meters) was negligible \u2013 on the order of a few points per thousand. Regarding the analysis conducted with the \u2018Gden Method\u2019, acoustic values do not diverge significantly from the other Italian cities, registering values that were, however, the highest in the investigated sample

    Escaping undesired gas-phase chemistry: Microwave-driven selectivity enhancement in heterogeneous catalytic reactors

    Get PDF
    Research in solid-gas heterogeneous catalytic processes is typically aimed toward optimization of catalyst composition to achieve a higher conversion and, especially, a higher selectivity. However, even with the most selective catalysts, an upper limit is found: Above a certain temperature, gas-phase reactions become important and their effects cannot be neglected. Here, we apply a microwave field to a catalyst-support ensemble capable of direct microwave heating (MWH). We have taken extra precautions to ensure that (i) the solid phase is free from significant hot spots and (ii) an accurate estimation of both solid and gas temperatures is obtained. MWH allows operating with a catalyst that is significantly hotter than the surrounding gas, achieving a high conversion on the catalyst while reducing undesired homogeneous reactions. We demonstrate the concept with the CO 2 -mediated oxidative dehydrogenation of isobutane, but it can be applied to any system with significant undesired homogeneous contributions

    R-parity Conserving Supersymmetry, Neutrino Mass and Neutrinoless Double Beta Decay

    Get PDF
    We consider contributions of R-parity conserving softly broken supersymmetry (SUSY) to neutrinoless double beta (\znbb) decay via the (B-L)-violating sneutrino mass term. The latter is a generic ingredient of any weak-scale SUSY model with a Majorana neutrino mass. The new R-parity conserving SUSY contributions to \znbb are realized at the level of box diagrams. We derive the effective Lagrangian describing the SUSY-box mechanism of \znbb-decay and the corresponding nuclear matrix elements. The 1-loop sneutrino contribution to the Majorana neutrino mass is also derived. Given the data on the \znbb-decay half-life of 76^{76}Ge and the neutrino mass we obtain constraints on the (B-L)-violating sneutrino mass. These constraints leave room for accelerator searches for certain manifestations of the 2nd and 3rd generation (B-L)-violating sneutrino mass term, but are most probably too tight for first generation (B-L)-violating sneutrino masses to be searched for directly.Comment: LATEX, 29 pages + 4 (uuencoded) figures appende

    Structural Analysis and Photocurrent Spectroscopy of CCCs on 99.99% Aluminum

    Get PDF
    A characterization of chromate conversion coatings (CCCs) formed in the presence and in the absence of accelerator (ferro-ferricyanide redox couple) has been performed by various techniques (transmission electron microscopy, TEM, glow discharge optical emission spectrometry, GDOES, X-ray absorption near-end structure, XANES, and photon correlation spectroscopy). The results of a detailed investigation on morphological, compositional, and solid-state properties of freshly converted aluminum samples at different immersion times (30 s-90 min) are reported. The TEM and GDOES data suggest the presence of iron-cyanide species only in the external layer of CCC of nearly constant thickness. The XANES data suggest the presence of both Cr(VI) and Cr(III) species with a ratio Cr(VI)/Cr(III) close to 1:2. This ratio remains constant with the conversion time and seems slightly affected by the composition of conversion solution. The photoelectrochemical study suggests an insulating or slightly p-type behavior for CCC layers. A bandgap value of about 2.55 eV has been estimated, regardless of the conversion solution, although some differences in the photocurrent spectra have been observed for coatings formed in the presence or absence of accelerator. The location of electronic energy levels of the Al/CCC/electrolyte interface has been derived which could account for the different kinetics of coating formation in the presence of accelerator
    corecore