320 research outputs found

    Robustness and modularity properties of a non-covalent DNA catalytic reaction

    Get PDF
    The biophysics of nucleic acid hybridization and strand displacement have been used for the rational design of a number of nanoscale structures and functions. Recently, molecular amplification methods have been developed in the form of non-covalent DNA catalytic reactions, in which single-stranded DNA (ssDNA) molecules catalyze the release of ssDNA product molecules from multi-stranded complexes. Here, we characterize the robustness and specificity of one such strand displacement-based catalytic reaction. We show that the designed reaction is simultaneously sensitive to sequence mutations in the catalyst and robust to a variety of impurities and molecular noise. These properties facilitate the incorporation of strand displacement-based DNA components in synthetic chemical and biological reaction networks

    A qualitative study into the use of formal services for dementia by carers from culturally and linguistically diverse (CALD) communities.

    Get PDF
    BACKGROUND: People with dementia and their family carers need to be able to access formal services in the community to help maintain their wellbeing and independence. While knowing about and navigating one's way through service systems is difficult for most people, it is particularly difficult for people from culturally and linguistically diverse (CALD) communities. This study addresses a lack of literature on the use of formal services for dementia by people from CALD backgrounds by examining the experiences and perceptions of dementia caregiving within four CALD communities - Italian, Chinese, Spanish and Arabic-speaking - in south western Sydney, Australia. METHODS: The study used a qualitative design and the methods included focus groups with family carers and one-to-one interviews with bilingual/bicultural community workers, bilingual general practitioners and geriatricians. A total of 121 family carers participated in 15 focus groups and interviews were held with 60 health professionals. All fieldwork was audiotaped, transcribed and subjected to thematic analysis. RESULTS: People from CALD communities are often unfamiliar with the concept of formal services and there may be strong cultural norms about maintaining care within the family, rather than relying on external services. CALD communities often have limited knowledge of services. There is a preference for services that will allow families to keep their relative at home, for safety as well as cultural reasons, and they are particularly reluctant to use residential care. While there is a preference for ethno-specific or multicultural services, mainstream services also need to ensure they are more flexible in providing culturally appropriate care. Positive outcomes occur when ethno-specific services work in partnership with mainstream programs. Dementia service providers need to develop a trusting relationship with their local CALD communities and promote their services in a way that is understandable and culturally acceptable to members of these communities. CONCLUSIONS: While members of CALD communities may have difficulties accessing formal services, they will use them if they are culturally and linguistically appropriate and can meet their needs. There are a number of ways to improve service provision to CALD communities and the responsibility for this needs to be shared by a range of stakeholders

    Pause Point Spectra in DNA Constant-Force Unzipping

    Get PDF
    Under constant applied force, the separation of double-stranded DNA into two single strands is known to proceed through a series of pauses and jumps. Given experimental traces of constant-force unzipping, we present a method whereby the locations of pause points can be extracted in the form of a pause point spectrum. A simple theoretical model of DNA constant-force unzipping is demonstrated to produce good agreement with the experimental pause point spectrum of lambda phage DNA. The locations of peaks in the experimental and theoretical pause point spectra are found to be nearly coincident below 6000 bp. The model only requires the sequence, temperature and a set of empirical base pair binding and stacking energy parameters, and the good agreement with experiment suggests that pause points are primarily determined by the DNA sequence. The model is also used to predict pause point spectra for the BacterioPhage PhiX174 genome. The algorithm for extracting the pause point spectrum might also be useful for studying related systems which exhibit pausing behavior such as molecular motors.Comment: 15 pages, 12 figure

    DNA Molecule Classification Using Feature Primitives

    Get PDF
    BACKGROUND: We present a novel strategy for classification of DNA molecules using measurements from an alpha-Hemolysin channel detector. The proposed approach provides excellent classification performance for five different DNA hairpins that differ in only one base-pair. For multi-class DNA classification problems, practitioners usually adopt approaches that use decision trees consisting of binary classifiers. Finding the best tree topology requires exploring all possible tree topologies and is computationally prohibitive. We propose a computational framework based on feature primitives that eliminates the need of a decision tree of binary classifiers. In the first phase, we generate a pool of weak features from nanopore blockade current measurements by using HMM analysis, principal component analysis and various wavelet filters. In the next phase, feature selection is performed using AdaBoost. AdaBoost provides an ensemble of weak learners of various types learned from feature primitives. RESULTS AND CONCLUSION: We show that our technique, despite its inherent simplicity, provides a performance comparable to recent multi-class DNA molecule classification results. Unlike the approach presented by Winters-Hilt et al., where weaker data is dropped to obtain better classification, the proposed approach provides comparable classification accuracy without any need for rejection of weak data. A weakness of this approach, on the other hand, is the very "hands-on" tuning and feature selection that is required to obtain good generalization. Simply put, this method obtains a more informed set of features and provides better results for that reason. The strength of this approach appears to be in its ability to identify strong features, an area where further results are actively being sought

    Salerno's model of DNA reanalysed: could solitons have biological significance?

    Full text link
    We investigate the sequence-dependent behaviour of localised excitations in a toy, nonlinear model of DNA base-pair opening originally proposed by Salerno. Specifically we ask whether ``breather'' solitons could play a role in the facilitated location of promoters by RNA polymerase. In an effective potential formalism, we find excellent correlation between potential minima and {\em Escherichia coli} promoter recognition sites in the T7 bacteriophage genome. Evidence for a similar relationship between phage promoters and downstream coding regions is found and alternative reasons for links between AT richness and transcriptionally-significant sites are discussed. Consideration of the soliton energy of translocation provides a novel dynamical picture of sliding: steep potential gradients correspond to deterministic motion, while ``flat'' regions, corresponding to homogeneous AT or GC content, are governed by random, thermal motion. Finally we demonstrate an interesting equivalence between planar, breather solitons and the helical motion of a sliding protein ``particle'' about a bent DNA axis.Comment: Latex file 20 pages, 5 figures. Manuscript of paper to appear in J. Biol. Phys., accepted 02/09/0

    LAVA: An Open-Source Approach To Designing LAMP (Loop-Mediated Isothermal Amplification) DNA Signatures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We developed an extendable open-source Loop-mediated isothermal AMPlification (LAMP) signature design program called LAVA (LAMP Assay Versatile Analysis). LAVA was created in response to limitations of existing LAMP signature programs.</p> <p>Results</p> <p>LAVA identifies combinations of six primer regions for basic LAMP signatures, or combinations of eight primer regions for LAMP signatures with loop primers, which can be used as LAMP signatures. The identified primers are conserved among target organism sequences. Primer combinations are optimized based on lengths, melting temperatures, and spacing among primer sites. We compare LAMP signature candidates for <it>Staphylococcus aureus </it>created both by LAVA and by PrimerExplorer. We also include signatures from a sample run targeting all strains of <it>Mycobacterium tuberculosis</it>.</p> <p>Conclusions</p> <p>We have designed and demonstrated new software for identifying signature candidates appropriate for LAMP assays. The software is available for download at <url>http://lava-dna.googlecode.com/</url>.</p

    Relationship between gene expression and observed intensities in DNA microarrays—a modeling study

    Get PDF
    A theoretical study of the physical properties which determine the variation in signal strength from probe to probe on a microarray is presented. A model which incorporates probe-target hybridization, as well as the subsequent dissociation which occurs during stringent washing of the microarray, is introduced and shown to reasonably describe publicly available spike-in experiments carried out at Affymetrix. In particular, this model suggests that probe-target dissociation during the stringent wash plays a critical role in determining the observed hybridization intensities. In addition, it is demonstrated that non-specific hybridization introduces uncertainties which significantly limit the ability of any model to accurately quantify absolute gene expression levels while, in contrast, target folding appears to have little effect on these results. Finally, for data from target spike-in experiments, our model is shown to compare favorably with an existing statistical model in determining target concentration levels

    A nonlinear dynamic model of DNA with a sequence-dependent stacking term

    Get PDF
    No simple model exists that accurately describes the melting behavior and breathing dynamics of double-stranded DNA as a function of nucleotide sequence. This is especially true for homogenous and periodic DNA sequences, which exhibit large deviations in melting temperature from predictions made by additive thermodynamic contributions. Currently, no method exists for analysis of the DNA breathing dynamics of repeats and of highly G/C- or A/T-rich regions, even though such sequences are widespread in vertebrate genomes. Here, we extend the nonlinear Peyrard–Bishop–Dauxois (PBD) model of DNA to include a sequence-dependent stacking term, resulting in a model that can accurately describe the melting behavior of homogenous and periodic sequences. We collect melting data for several DNA oligos, and apply Monte Carlo simulations to establish force constants for the 10 dinucleotide steps (CG, CA, GC, AT, AG, AA, AC, TA, GG, TC). The experiments and numerical simulations confirm that the GG/CC dinucleotide stacking is remarkably unstable, compared with the stacking in GC/CG and CG/GC dinucleotide steps. The extended PBD model will facilitate thermodynamic and dynamic simulations of important genomic regions such as CpG islands and disease-related repeats

    Free energy estimation of short DNA duplex hybridizations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estimation of DNA duplex hybridization free energy is widely used for predicting cross-hybridizations in DNA computing and microarray experiments. A number of software programs based on different methods and parametrizations are available for the theoretical estimation of duplex free energies. However, significant differences in free energy values are sometimes observed among estimations obtained with various methods, thus being difficult to decide what value is the accurate one.</p> <p>Results</p> <p>We present in this study a quantitative comparison of the similarities and differences among four published DNA/DNA duplex free energy calculation methods and an extended Nearest-Neighbour Model for perfect matches based on triplet interactions. The comparison was performed on a benchmark data set with 695 pairs of short oligos that we collected and manually curated from 29 publications. Sequence lengths range from 4 to 30 nucleotides and span a large GC-content percentage range. For perfect matches, we propose an extension of the Nearest-Neighbour Model that matches or exceeds the performance of the existing ones, both in terms of correlations and root mean squared errors. The proposed model was trained on experimental data with temperature, sodium and sequence concentration characteristics that span a wide range of values, thus conferring the model a higher power of generalization when used for free energy estimations of DNA duplexes under non-standard experimental conditions.</p> <p>Conclusions</p> <p>Based on our preliminary results, we conclude that no statistically significant differences exist among free energy approximations obtained with 4 publicly available and widely used programs, when benchmarked against a collection of 695 pairs of short oligos collected and curated by the authors of this work based on 29 publications. The extended Nearest-Neighbour Model based on triplet interactions presented in this work is capable of performing accurate estimations of free energies for perfect match duplexes under both standard and non-standard experimental conditions and may serve as a baseline for further developments in this area of research.</p

    Hybridization thermodynamics of NimbleGen Microarrays

    Get PDF
    Background While microarrays are the predominant method for gene expression profiling, probe signal variation is still an area of active research. Probe signal is sequence dependent and affected by probe-target binding strength and the competing formation of probe-probe dimers and secondary structures in probes and targets. Results We demonstrate the benefits of an improved model for microarray hybridization and assess the relative contributions of the probe-target binding strength and the different competing structures. Remarkably, specific and unspecific hybridization were apparently driven by different energetic contributions: For unspecific hybridization, the melting temperature Tm was the best predictor of signal variation. For specific hybridization, however, the effective interaction energy that fully considered competing structures was twice as powerful a predictor of probe signal variation. We show that this was largely due to the effects of secondary structures in the probe and target molecules. The predictive power of the strength of these intramolecular structures was already comparable to that of the melting temperature or the free energy of the probe-target duplex. Conclusions This analysis illustrates the importance of considering both the effects of probe-target binding strength and the different competing structures. For specific hybridization, the secondary structures of probe and target molecules turn out to be at least as important as the probe-target binding strength for an understanding of the observed microarray signal intensities. Besides their relevance for the design of new arrays, our results demonstrate the value of improving thermodynamic models for the read-out and interpretation of microarray signals
    corecore