1,756 research outputs found

    Gauge and Averaging in Gravitational Self-force

    Full text link
    A difficulty with previous treatments of the gravitational self-force is that an explicit formula for the force is available only in a particular gauge (Lorenz gauge), where the force in other gauges must be found through a transformation law once the Lorenz gauge force is known. For a class of gauges satisfying a ``parity condition'' ensuring that the Hamiltonian center of mass of the particle is well-defined, I show that the gravitational self-force is always given by the angle-average of the bare gravitational force. To derive this result I replace the computational strategy of previous work with a new approach, wherein the form of the force is first fixed up to a gauge-invariant piece by simple manipulations, and then that piece is determined by working in a gauge designed specifically to simplify the computation. This offers significant computational savings over the Lorenz gauge, since the Hadamard expansion is avoided entirely and the metric perturbation takes a very simple form. I also show that the rest mass of the particle does not evolve due to first-order self-force effects. Finally, I consider the ``mode sum regularization'' scheme for computing the self-force in black hole background spacetimes, and use the angle-average form of the force to show that the same mode-by-mode subtraction may be performed in all parity-regular gauges. It appears plausible that suitably modified versions of the Regge-Wheeler and radiation gauges (convenient to Schwarzschild and Kerr, respectively) are in this class

    Fingerprint Adversarial Presentation Attack in the Physical Domain

    Get PDF
    With the advent of the deep learning era, Fingerprint-based Authentication Systems (FAS) equipped with Fingerprint Presentation Attack Detection (FPAD) modules managed to avoid attacks on the sensor through artificial replicas of fingerprints. Previous works highlighted the vulnerability of FPADs to digital adversarial attacks. However, in a realistic scenario, the attackers may not have the possibility to directly feed a digitally perturbed image to the deep learning based FPAD, since the channel between the sensor and the FPAD is usually protected. In this paper we thus investigate the threat level associated with adversarial attacks against FPADs in the physical domain. By materially realising fakes from the adversarial images we were able to insert them into the system directly from the “exposed” part, the sensor. To the best of our knowledge, this represents the first proof-of-concept of a fingerprint adversarial presentation attack. We evaluated how much liveness score changed by feeding the system with the attacks using digital and printed adversarial images. To measure what portion of this increase is due to the printing itself, we also re-printed the original spoof images, without injecting any perturbation. Experiments conducted on the LivDet 2015 dataset demonstrate that the printed adversarial images achieve ∼ 100% attack success rate against an FPAD if the attacker has the ability to make multiple attacks on the sensor (10) and a fairly good result (∼ 28%) in a one-shot scenario. Despite this work must be considered as a proof-of-concept, it constitutes a promising pioneering attempt confirming that an adversarial presentation attack is feasible and dangerous

    preliminary trials to rear the copepod temora stylifera as food for fish larvae

    Get PDF
    AbstractCopepods represent an important natural food supply for many fish larvae but they are not commonly used in aquaculture. The aim of this project is: 1) to set up an experimental re-circulating system to breed the copepod Temora stylifera and 2) to replace Artemia salina with T. stylifera as live food for Sparus aurata larvae. The choice of this copepod species has been based on both its abundance in the Mediterranean as well as its characteristics in terms of size and nutritional value. The re-circulating system consists of a collecting water tank of 1,000 litre of capacity, a thermoregulation system, two 500 litre tanks to rear adults and two 200 litre tanks to collect nauplii. The system allows the computerised water re-circle and to concentrate and collect nauplii through their positive response to light. It can work both in a partial re-circle way, for the thermoregulation only, as well as in a total re-circle way for the water purification through mechanic and biological filters. The culture s..

    Efficacy of methylergometrine during the early puerperium: a randomized double-blind placebo-controlled clinical trial

    Get PDF
    OBJECTIVE: To determine if oral methylergometrine administration during the first 10 d following spontaneous vaginal delivery has any beneficial effect on the increase of hemoglobin levels. METHODS: This was a parallel group double-blind placebo-controlled clinical trial conducted at single center university hospital in Italy. Participants were puerperal women, who delivered singleton gestation with spontaneous vaginal delivery at term. Participants were randomized into a 1:1 ratio to receive either 0.125 mg methylergometrine per os twice a day or placebo for 10 d. Hemoglobin levels were recorded on the day of delivery and after 10 d. The primary outcome was the variation in hemoglobin levels between the first and the 10th day of treatment. RESULTS: From December 2012 to October 2015, 220 agreed to take part in the study, underwent randomization, and were enrolled and followed-up. Of the randomized women, 110 (50%) were randomized to the methylergometrine group and 110 (50%) to the placebo group. No women were excluded after randomization or lost to follow-up (100%). We found no significant difference in the median variation of hemoglobin levels between the intervention and the placebo group Conclusions: The use of 10 d oral methylergometrine in puerperal women was not associated with any benefit in the variation of hemoglobin levels from delivery to 10 d after delivery. Key Message Methylergometrine in puerperal women was not associated with any benefit

    Ultracold Dipolar Gases in Optical Lattices

    Full text link
    This tutorial is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules that interact via dipolar forces, and that are cooled below the quantum degeneracy temperature, typically in the nK range. When such a degenerate quantum gas is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur. These systems realize then extended Hubbard-type models, and can be brought to a strongly correlated regime. The physical properties of such gases, dominated by the long-range, anisotropic dipole-dipole interactions, are discussed using the mean-field approximations, and exact Quantum Monte Carlo techniques (the Worm algorithm).Comment: 56 pages, 26 figure

    Gravity in 2+1 dimensions as a Riemann-Hilbert problem

    Get PDF
    In this paper we consider 2+1-dimensional gravity coupled to N point-particles. We introduce a gauge in which the zz- and zˉ\bar{z}-components of the dreibein field become holomorphic and anti-holomorphic respectively. As a result we can restrict ourselves to the complex plane. Next we show that solving the dreibein-field: eza(z)e^a_z(z) is equivalent to solving the Riemann-Hilbert problem for the group SO(2,1)SO(2,1). We give the explicit solution for 2 particles in terms of hypergeometric functions. In the N-particle case we give a representation in terms of conformal field theory. The dreibeins are expressed as correlators of 2 free fermion fields and twistoperators at the position of the particles.Comment: 32 pages Latex, 4 figures (uuencoded

    Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

    Get PDF
    Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL-1. The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survival on NAs included changes in cell morphology, production of intracellular bodies and changes in fatty acid composition. Transmission electron microscopy (TEM) analysis of BCP1 cells grown on CHCA or CPCA showed a slight reduction in the cell size, the production of EPS-like material and intracellular electron-transparent and electron-dense inclusion bodies. The electron-transparent inclusions increased in the amount and size in NA-grown BCP1 cells under nitrogen limiting conditions and contained storage lipids as suggested by cell staining with the lipophilic Nile Blue A dye. Lipidomic analyses revealed significant changes with increases of methyl-branched (MBFA) and polyunsaturated fatty acids (PUFA) examining the fatty acid composition of NAs-growing BCP1 cells. PUFA biosynthesis is not usual in bacteria and, together with MBFA, can influence structural and functional processes with resulting effects on cell vitality. Finally, through the use of RT (Reverse Transcription)-qPCR, a gene cluster (chcpca) was found to be transcriptionally induced during the growth on CHCA and CPCA. Based on the expression and bioinformatics results, the predicted products of the chcpca gene cluster are proposed to be involved in aerobic NA degradation in R. aetherivorans BCP1. This study provides first insights into the genetic and metabolic mechanisms allowing a Rhodococcus strain to aerobically degrade NAs

    Quantum magnetism and counterflow supersolidity of up-down bosonic dipoles

    Full text link
    We study a gas of dipolar Bosons confined in a two-dimensional optical lattice. Dipoles are considered to point freely in both up and down directions perpendicular to the lattice plane. This results in a nearest neighbor repulsive (attractive) interaction for aligned (anti-aligned) dipoles. We find regions of parameters where the ground state of the system exhibits insulating phases with ferromagnetic or anti-ferromagnetic ordering, as well as with rational values of the average magnetization. Evidence for the existence of a novel counterflow supersolid quantum phase is also presented.Comment: 8 pages, 6 figure

    Capsaicin 8% patch and chronic postsurgical neuropathic pain

    Get PDF
    (1) Background: Surgery is a frequent cause of persistent pain, defined chronic post-surgical pain (CPSP). The capsaicin 8% patch (Qutenza®) is approved for the treatment of postherpetic neuralgia (PHN) and for diabetic peripheral neuropathy (DPN) of the feet. We propose a review of the literature on use of the capsaicin 8% patch to treat neuropathic pain associated with surgery; (2) Methods: We identified the articles by searching electronic databases using a combination of such terms as “capsaicin 8% patch”, “Qutenza®”, and “chronic postsurgical pain”; (3) Results: We identified 14 selected studies reporting on a total of 632 CPSP cases treated with capsaicin 8% patch. Treatment with the capsaicin 8% patch significantly reduced the average pain intensity. Only 5 studies reported adverse events (AEs) after the patch application. The most common AEs were erythema, burning sensation and pain; (4) Conclusions: Our review indicate that capsaicin 8% patch treatment for CPSP is effective, safe and well tolerated, but randomized controlled trials on efficacy, safety and tolerability should be conducted
    corecore