290 research outputs found

    Micro-RNAs: New Biomarkers and Novel Applications for Heart Disease Prevention and Treatment

    Get PDF
    MicroRNAs (MiRNAs) have emerged as pivotal modulators of mammalian cardiovascular development and disease over the past few years. They represent a biological mechanism for regulating gene expression and consequently a broad range of physiological and pathological molecular processes. Importantly, multiple miRNAs have been implicated in heart disease onset and progression, whereas in the case of cardiac hypertrophy and heart failure, recent data are changing our perception of disease pathogenesis and therapeutics. This review presents the concept of miRNAs, mechanisms of generation, and representative examples of associations with cardiovascular disease pathogenesis and therapeutic potential

    The Crocus sativus Compounds trans-Crocin 4 and trans-Crocetin Modulate the Amyloidogenic Pathway and Tau Misprocessing in Alzheimer Disease Neuronal Cell Culture Models

    Get PDF
    Crocus sativus L. natural compounds have been extensively used in traditional medicine for thousands of years. Recent research evidence is now emerging in support of its therapeutic potential for different pathologies including neurodegenerative diseases. Herein, the C. sativus L. natural compounds trans-crocin 4 and trans-crocetin were selected for in depth molecular characterization of their potentially protective effects against Alzheimer’s Disease (AD), utilizing two AD neuronal cell culture models (SH-SY5Y overexpressing APP and PC12 expressing hyperphosphorylated tau). Biologically relevant concentrations, ranging from 0.1 μM to 1 mM, applied for 24 h or 72 h, were well tolerated by differentiated wild type SH-SY5Y and PC12 cells. When tested on neuronally differentiated SH-SY5Y-APP both trans-crocin 4 and trans-crocetin had significant effects against amyloidogenic pathways. Trans-crocin 4 significantly decreased of β-secretase, a key enzyme of the amyloidogenic pathway, and APP-C99, while it decreased γ-secretases that generate toxic beta-amyloid peptides. Similarly, trans-crocetin treatment led to a reduction in β- and γ-secretases, as well as to accumulation of cellular AβPP. When tested on the neuronally differentiated PC12-htau cells, both compounds proved effective in suppressing the active forms of GSK3β and ERK1/2 kinases, as well as significantly reducing total tau and tau phosphorylation. Collectively, our data demonstrate a potent effect of trans-crocin 4 and trans-crocetin in suppressing key molecular pathways of AD pathogenesis, rendering them a promising tool in the prevention and potentially the treatment of AD

    Forced swim test induces divergent global transcriptomic alterations in the hippocampus of high versus low novelty-seeker rats

    Get PDF
    BACKGROUND: Many neuropsychiatric disorders, including stress-related mood disorders, are complex multi-parametric syndromes. Susceptibility to stress and depression is individually different. The best animal model of individual differences that can be used to study the neurobiology of affect regards spontaneous reactions to novelty. Experimentally, when naive rats are exposed to the stress of a novel environment, they display a highly variable exploratory activity and are classified as high or low responders (HR or LR, respectively). Importantly, HR and LR rats do not seem to exhibit a substantial differentiation in relation to their ‘depressive-like’ status in the forced swim test (FST), a widely used animal model of ‘behavioral despair’. In the present study, we investigated whether FST exposure would be accompanied by phenotype-dependent differences in hippocampal gene expression in HR and LR rats. RESULTS: HR and LR rats present a distinct behavioral pattern in the pre-test session but develop comparable depressive-like status in the second FST session. At 24 h following the second FST session, HR and LR rats (stressed and unstressed controls) were sacrificed and hippocampal samples were independently analyzed on whole rat genome Illumina arrays. Functional analysis into pathways and networks was performed using Ingenuity Pathway Analysis (IPA) software. Notably, hippocampal gene expression signatures between HR and LR rats were markedly divergent, despite their comparable depressive-like status in the FST. These molecular differences are reflected in both the extent of transcriptional remodeling (number of significantly changed genes) and the types of molecular pathways affected following FST exposure. A markedly higher number of genes (i.e., 2.28-fold) were statistically significantly changed following FST in LR rats, as compared to their HR counterparts. Notably, genes associated with neurogenesis and synaptic plasticity were induced in the hippocampus of LR rats in response to FST, whereas in HR rats, FST induced pathways directly or indirectly associated with induction of apoptotic mechanisms. CONCLUSIONS: The markedly divergent gene expression signatures exposed herein support the notion that the hippocampus of HR and LR rats undergoes distinct transcriptional remodeling in response to the same stress regimen, thus yielding a different FST-related ‘endophenotype’, despite the seemingly similar depressive-like phenotype

    The march of pluripotent stem cells in cardiovascular regenerative medicine

    Get PDF
    Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as myocardial disease modeling and cardiac regeneration are emphasized

    Role of Esrrg in the Fibrate-Mediated Regulation of Lipid Metabolism Genes in Human ApoA-I Transgenic Mice

    Get PDF
    We have used a new ApoA-I transgenic mouse model to identify by global gene expression profiling, candidate genes that affect lipid and lipoprotein metabolism in response to fenofibrate treatment. Multilevel bioinformatical analysis and stringent selection criteria (2-fold change, 0% false discovery rate) identified 267 significantly changed genes involved in several molecular pathways. The fenofibrate-treated group did not have significantly altered levels of hepatic human APOA-I mRNA and plasma ApoA-I compared with the control group. However, the treatment increased cholesterol levels to 1.95-fold mainly due to the increase in high-density lipoprotein (HDL) cholesterol. The observed changes in HDL are associated with the upregulation of genes involved in phospholipid biosynthesis and lipid hydrolysis, as well as phospholipid transfer protein. Significant upregulation was observed in genes involved in fatty acid transport and β-oxidation, but not in those of fatty acid and cholesterol biosynthesis, Krebs cycle and gluconeogenesis. Fenofibrate changed significantly the expression of seven transcription factors. The estrogen receptor-related gamma gene was upregulated 2.36-fold and had a significant positive correlation with genes of lipid and lipoprotein metabolism and mitochondrial functions, indicating an important role of this orphan receptor in mediating the fenofibrate-induced activation of a specific subset of its target genes.National Institutes of Health (HL48739 and HL68216); European Union (LSHM-CT-2006-0376331, LSHG-CT-2006-037277); the Biomedical Research Foundation of the Academy of Athens; the Hellenic Cardiological Society; the John F Kostopoulos Foundatio

    Natural Products as Sources of Potential Antiamyloidogenic Agents

    Get PDF
    Natural products have played a dominant role in the discovery of leads for the development of drugs aimed at the treatment of human diseases. Moreover, they may serve as lead compounds for the synthesis of potential therapeutic agents against several diseases. In this study, we present an integrated approach towards the evaluation of the antiamyloidogenic activity of isolated components from the stigmas of saffron, combining isolation of bioactive components from saffron, real-time in vitro screening for noncovalent association with Aβ by ESI MS and cell viability assays. This is a suitable approach for selecting compounds for the ensuing in vivo studies, and it may provide insights into the design and synthesis of novel compounds for the prevention, or treatment of Alzheimer’s Disease (AD)

    Estrogen Receptor Subtypes Elicit a Distinct Gene Expression Profile of Endothelial-Derived Factors Implicated in Atherosclerotic Plaque Vulnerability

    Get PDF
    In the presence of established atherosclerosis, estrogens are potentially harmful. MMP-2 and MMP-9, their inhibitors (TIMP-2 and TIMP-1), RANK, RANKL, OPG, MCP-1, lysyl oxidase (LOX), PDGF-β, and ADAMTS-4 play critical roles in plaque instability/rupture. We aimed to investigate (i) the effect of estradiol on the expression of the abovementioned molecules in endothelial cells, (ii) which type(s) of estrogen receptors mediate these effects, and (iii) the role of p21 in the estrogen-mediated regulation of the aforementioned factors. Human aortic endothelial cells (HAECs) were cultured with estradiol in the presence or absence of TNF-α. The expression of the aforementioned molecules was assessed by qRT-PCR and ELISA. Zymography was also performed. The experiments were repeated in either ERα- or ERβ-transfected HAECs and after silencing p21. HAECs expressed only the GPR-30 estrogen receptor. Estradiol, at low concentrations, decreased MMP-2 activity by 15-fold, increased LOX expression by 2-fold via GPR-30, and reduced MCP-1 expression by 3.5-fold via ERβ. The overexpression of ERα increased MCP-1 mRNA expression by 2.5-fold. In a low-grade inflammation state, lower concentrations of estradiol induced the mRNA expression of MCP-1 (3.4-fold) and MMP-9 (7.5-fold) and increased the activity of MMP-2 (1.7-fold) via GPR-30. Moreover, p21 silencing resulted in equivocal effects on the expression of the abovementioned molecules. Estradiol induced different effects regarding atherogenic plaque instability through different ERs. The balance of the expression of the various ER subtypes may play an important role in the paradoxical characterization of estrogens as both beneficial and harmful
    • …
    corecore