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Abstract

Cardiovascular disease (CVD) continues to be the leading cause of global morbidity and mortality. Heart failure
remains a major contributor to this mortality. Despite major therapeutic advances over the past decades, a better
understanding of molecular and cellular mechanisms of CVD as well as improved therapeutic strategies for the
management or treatment of heart failure are increasingly needed. Loss of myocardium is a major driver of heart
failure. An attractive approach that appears to provide promising results in reducing cardiac degeneration is stem
cell therapy (SCT). In this review, we describe different types of stem cells, including embryonic and adult stem
cells, and we provide a detailed discussion of the properties of induced pluripotent stem cells (iPSCs). We also
present and critically discuss the key methods used for converting somatic cells to pluripotent cells and iPSCs to
cardiomyocytes (CMs), along with their advantages and limitations. Integrating and non-integrating reprogramming
methods as well as characterization of iPSCs and iPSC-derived CMs are discussed. Furthermore, we critically present
various methods of differentiating iPSCs to CMs. The value of iPSC-CMs in regenerative medicine as well as
myocardial disease modeling and cardiac regeneration are emphasized.
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Background

Cardiovascular disease (CVD) remains the leading cause
of death worldwide, killing 17 million people each year.
The World Health Organization (WHO) estimates that
by 2020 this number will reach 24 million. With com-
plex multifactorial pathologies, including both genetic
and environmental factors, CVD continues to be difficult
to prevent. Current strategies against CVD include preven-
tion (ie., lifestyle changes) and pharmacological and/or
surgical intervention. However, the effectiveness of drug
treatment varies among individuals, while surgical inter-
ventions may not be applicable to all patients. New ap-
proaches need to be established to better understand the
mechanisms of CVD and improve diagnostic and thera-
peutic strategies, particularly in the context of heart failure.
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Loss of myocardium results in the clinical syndrome
of heart failure [1]. The long-term prognosis of heart
failure is poor and current therapies are largely palliative
[2, 3]. The only treatment for end-stage heart failure
with established long-term efficacy is transplantation.
However, the increasing prevalence of heart failure and
existing shortage of donor organs are frequent chal-
lenges [4, 5].

Stem cell therapy (SCT) aims to reduce cardiac degen-
eration by regenerating cardiomyocytes (CMs) and is
currently considered one of the most promising thera-
peutic strategies [6, 7]. Stem cells are undifferentiated
cells theoretically capable of renewing themselves indef-
initely under appropriate conditions through mitotic cell
division, and can maintain, generate, or replace damaged
tissue by differentiating into specialized cell types [8].
This review describes different types of stem cells, in-
cluding embryonic stem cells (ESCs) and adult stem cells
(ASCs), and focuses primarily on induced pluripotent
stem cells (iPSCs). The key methods used for converting
somatic cells to iPSCs and then to CMs are presented,
along with their advantages and limitations. Emphasis is
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given to the value of iPSC-derived CMs (iPSC-CMs) in
regenerative medicine and myocardial disease modeling.

Stem cell potency

Stem cells can be classified according to their “potency”
or “differentiation potential” (Table 1). Importantly,
newer cell types, such as iPSC-CMs, directly transdiffer-
entiated CMs, and endogenous cardiac stem cell derived
CMs (CSC-CMs), could be easily obtained from any in-
dividual and used to create patient- and disease-specific
models, enabling the elucidation of molecular and gen-
etic mechanisms that underlie inherited diseases pheno-
types and unveiling novel therapeutic and personalized
therapeutic targets [9-14].

Multipotent stem cells for SCT

Adult or somatic stem cells (ASCs) are non-embryonic
multipotent stem cells found in the adult organism after
embryonic development and residing in an area in tis-
sues called the “stem cell niche” [15, 16]. ASCs exist in
various tissues, such as the bone marrow [17, 18], cord
blood [19, 20], skeletal muscles [21, 22], peripheral blood
[23, 24], adipose tissue [25, 26], lung [27, 28], and the
heart [29, 30]. Unlike ESCs, ASC origins are not well
defined and their multipotency is very limited. Their
primary functions are to maintain the homeostasis of
mature cell tissues and, with limitations, to regenerate
damaged organs. However, ASCs are rare in mature tis-
sues, have limited capacity to differentiate into multiple
cell lineages, and behave differently depending on envir-
onmental stimuli. In addition, their isolation from adult
tissues is challenging, and methods of culture have not yet
been optimized. For example, bone marrow-derived
hematopoietic stem cells (HSCs) have been studied in
multiple diseases, including bone-marrow failure [31], vas-
culogenesis [32, 33], and cardiac regeneration [17, 34].
However, HSCs represent a very small fraction (only
0.01-0.015%) of the total bone marrow cells and their
therapeutic and differentiation potential is highly controver-
sial [35, 36]. Consequently, although ASCs would represent

Table 1 Differential potential of stem cells
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a valuable and promising source of stem cells and SCT,
their use is still hindered by a series of biological and tech-
nical limitations that require further investigation.

Pluripotent stem cells for SCT: shift from ESCs to
iPSCs

ESCs are isolated from embryos and can be classified as
totipotent or pluripotent depending on their temporal
existence during fetal development. Totipotent ESCs are
present in the earliest eight-cell stage embryo, whereas
pluripotent ESCs are found throughout the remainder of
embryonic development. In this review, ESCs refer to
the pluripotent type of ESCs, obtained from a 4- or
5-day-old embryo, also known as the blastocyst phase of
development. ESCs are extracted from the inner cell
mass of blastocysts and placed in a controlled culture
that allows them to divide indefinitely without further
cell differentiation. These ex vivo expanded cells serve as
a paramount source of stem cells for transplantation
therapies for many diseases, including cardiomyopathies,
neurological disorders, and diabetes (Fig. 1). However, a
series of ethical and technical issues restricts ESC use
[37]. Technically, the use of ESCs for cell transplantation
requires a differentiation step to the target cell lineage
with formation of undifferentiated cells amongst the cel-
lular product [38]. This can induce spontaneous tera-
toma formation in host tissue, raising safety concerns
that must be carefully addressed [39, 40]. Moreover, the
allogeneic nature of ESCs may induce immune responses
with a prominent risk of rejection.

Ethically, the use of human ESCs (hESCs) is contro-
versial, with many pro-life advocates being concerned
about the isolation of hESCs from “living” embryos. In
2001, the USA government banned stem cell research by
restricting federal funding for research on hESCs. To
allow responsible scientific research involving human
stem cells, the National Institutes of Health (NIH) estab-
lished the “Human Embryonic Stem Cell Registry”,
which lists 177 stem cell lines that are suitable for em-
ployment in federally funded research. Unfortunately,

Differential potential Number of stem types

Original stem cell

Differentiated cells

Totipotential All
Pluripotential

membranes
Multipotential Many

Oligopotential

Unipotential 1

Nullipotentail None

All except cells of the embryonic

Few (2-4 cells)

Fertilized egg (zygote)

Cultured embryonic stem cells (ESCs)

Adult stem cells (bone marrow, cord
blood, peripheral blood, heart, lung)

Myeloid precursor, mesenchymal
stem cell, glial-restricted precursor

Mast cell precursor

Terminally differentiated cell (e.g., red
blood cell)

All cell types

Cells from all three germ layers

Blood cells, cardiomyocytes, neural
cells, hepatocytes, endothelial cells,
myocytes
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chondrocytes, adipocytes

Mast cell

No cell division
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Fig. 1 Generation of embryonic stem cells. A fertilized egg is allowed to develop to the blastocyst stage. The inner cell mass dissociates from the
trophoblast by laser dissection or enzymatic digestion. Isolated cells are cultured in this pluripotent state for a long period of time in the presence of
growth factors. The pluripotent stem cells can be differentiated into various cell lineages, such as cardiomyocytes, neurons, or liver cells

not all of these stem cell lines are readily available, and
scientists have concerns about the quality and the lon-
gevity of these stem cell lines. To bypass these chal-
lenges, an increasing number of laboratories around the
world are currently using iPSCs to limit the use of
hESCs and the destruction of living human embryos.

iPSCs: the promising era of SCT

Practical considerations such as the availability of em-
bryonic tissues and the isolation of relatively rare cell
types have limited the large-scale production of pure
stem cells for industrial and clinical applications. As
such, the stem cell research field has explored other op-
tions, such as transforming fully differentiated adult
somatic cells into pluripotent stem cell (PSCs). The
reacquisition of a pluripotent state, known as “cell repro-
gramming”’, represents a paradigm shift in our under-
standing of cellular differentiation and of the plasticity
of the differentiated state.

Historical overview

The concept of cell reprogramming is not novel (Fig. 2).
It was first proposed in 1950 by Robert Briggs and
Thomas King, who successfully achieved nuclear transfer

of blastula cells into enucleated frog eggs [41]. In 1958,
Sir John Gurdon (Nobel Prize in Medicine, 2012) cloned
a frog using a technique called somatic cell nuclear
transfer (SCNT). Gurdon extracted the nucleus of an in-
testinal cell from a Xenopus tadpole and injected it into
a recipient enucleated frog egg [42]. The fecund egg de-
veloped into an embryo that was genetically identical to
the donor. Gurdon argued that the cytoplasm of the host
egg contains factors that could reprogram the genome of
the differentiated cell into a totipotent one-cell-stage
embryo. In 1964, a group of researchers generated PSCs
from mouse embryonal carcinoma cells (ECCs) [43].
Others produced PSCs by a process of cell fusion be-
tween ECCs and somatic cells, suggesting that PSCs
contain factors which confer pluripotency to somatic
cells [44]. These experiments introduced the concept of
“induced pluripotency” in somatic cells and extended
Gurdon’s work in simple organisms, such as the tadpole,
to complex mammals, and even humans. Between 1985
and 1990 different clones of PSCs were derived from hu-
man ECC lines [45-47]. A few years later, Thompson
and colleagues reported the establishment of pluripotent
cell lines derived from primates [48, 49] and human
blastocysts [50]. In 1997, the production of the first
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Fig. 2 Stem cell research: key dates. Genetic reprogramming started as early as 1958 with the first somatic nuclear cell transfer, demonstrating
that the nucleus was responsible for the function of a cell. The derivation of the first embryonic stem cell from mice was only achieved in the
early 1980s. The major breakthrough that turned world attention toward cloning and genetic manipulation happened in 1997 with the first
animal cloning of the famous sheep Dolly. Soon after, in 1998, the first human embryonic stem cell was derived. Those cells remained the only
pluripotent stem cells at the disposal of researchers until 2006, when Shinya Yamanaka identified the reprogramming factors capable of inducing

iPSC induced pluripotent stem cell

pluripotency in adult cells. Somatic nuclear cell transfer image is courtesy of Howard Hughes Medical Institute (HHMI). Mouse ESC image is
courtesy of emouseatlas.org. Dolly the sheep, human ESC, and mouse iPSC images are courtesy of wikipedia.org. ESC embryonic stem cell,

adult cell-derived animal (a sheep known as Dolly) was
achieved using the SCNT method [51]. In 2006, Shinya
Yamanaka (Nobel Prize in Medicine, 2012) from Kyoto
University established the first iPSCs by insertion of de-
fined “stemness” genes into the nucleus of somatic cells
[52]. These genes were retrovirally introduced into adult
mouse fibroblasts and encoded four transcription factors
(Oct3/4, Sox2, KlIf4, and c-Myc (OSKM)) known to be
involved in the maintenance of pluripotency. Yamanaka’s
work transformed our understanding of epigenetic re-
programming of somatic cells to a pluripotent state and
set the ground for the development of human iPSCs
(hiPSCs). This can now be achieved using either the
original four genes [53] or a different combination of
Oct3/4, Sox2, Nanog, and Lin28 [54, 55].

Nanog: the ever-young player in the iPSC orchestra

To date, the transcription factor Oct3/4 is thought to be
indispensable for inducing pluripotency in somatic cells
whereas Sox2, Klf4, and c-Myc are alternative supporting
factors [56]. In 2003, Ian Chambers from the University of
Edinburgh isolated a mouse gene, named Nanog, after the
mythological Celtic land of the ever young, Tir nan Og.
The Nanog gene is specifically expressed in PSCs and
thought to be a key factor in maintaining the pluripotency
state [57, 58]. Thus, it has been shown that the overex-
pression of Nanog in mESCs causes them to self-renew in
the absence of cytokines and growth factors. Similar

results were obtained with hESCs; Nanog overexpression
enabled their propagation for multiple passages during
which the cells remained pluripotent [59]. Conversely, the
knockdown of Nanog promotes the differentiation of
ESCs into other cell types, thereby demonstrating the cap-
ability of this gene to preserve the stemness state [60, 61].
Further, Nanog has been used in concert with other tran-
scription factors to reprogram human somatic cells to
iPSCs, in which it can serve as a selective marker of pluri-
potency [53-55, 62].

Inducing PSCs

iPSCs are reprogrammed adult somatic cells, originally
produced by retrovirus-mediated transduction of four
transcription factors—Oct3/4, Sox2, Klf4, and c-Myc—
known subsequently as OSKM factors [52]. The newly
created iPSCs display phenotypic and functional proper-
ties of ESCs and contribute to embryonic development
when injected into mouse blastocysts. Since then, mouse
iPSCs (miPSCs) have been generated from embryonic fi-
broblasts [62], adult tail-tip fibroblasts [55], hepatocytes
and gastric epithelial cells [63], pancreatic cells [64],
neural stem cells [65], and B lymphocytes [66]. Add-
itionally, researchers have reported generating iPSCs
from somatic tissues of monkey [67] and rat [68]. In
humans, many tissue sources have been used for suc-
cessful generation of iPSCs. These include peripheral
blood cells [24], cord blood cells [69, 70], keratinocytes
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[71], skin fibroblasts [53, 72—74], melanocytes [75], adi-
pocytes [76], and neural stem cells [77]. Consequently,
the development of hiPSCs has rapidly emerged as a
promising source of PSCs, a tremendously valuable
source of cells for tissue engineering, cell-based therap-
ies, novel drug screening, as well as the molecular and
cellular characterization of disease pathogenesis. Several
approaches towards the generation of iPSCs have
emerged. The methods used to reprogram adult cells to
iPSCs can be grouped into two major categories, inte-
grating and non-integrating methods [78].

Integrating reprogramming methods

Viral integration method

The viral integration method represents the first success-
ful approach for somatic cell reprogramming to iPSCs and
uses viral delivery (retrovirus or lentivirus) of four repro-
gramming factors (OSKM) into the host genome [79]. In
this method the transgenes carried by the viral vectors are
randomly inserted into the host genome and iPSC col-
onies appear in culture within 3—4 weeks (Fig. 3). Expres-
sion of the transgenes is normally silenced in iPSCs,
although a low level of expression or spontaneous reacti-
vation may be observed. This may in turn affect other
aspects of gene expression, DNA methylation, or pluripo-
tency potential [72, 80—-83]. As a result, such iPSCs may
affect the phenotypes of their derived cells, rendering
them refractory to differentiation in vitro or in vivo
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following transplantation. For example, c¢-Myc is a
well-known proto-oncogene whose reactivation following
retroviral gene transduction resulted in tumor formation
in almost 50% of chimeric mice generated from iPSCs
[62, 84, 85]. Therefore, other reprogramming factors
have been screened and c-Myc-free iPSCs were generated
using a combination of four or three of the Oct3/4, Sox2,
Nanog, and Lin28 factors [54, 55, 85—87]. These alterna-
tive approaches were successful in the production of
iPSCs without transgenic insertion of c-Myc, albeit with
reduced efficiency [55, 84]. Other studies have further re-
duced the number of genes required for reprogramming
to one or two factors using Oct3/4 alone [77, 88] or in
combination with Sox2 or KIf4 [65, 89-91]. Of note, the
omission of one or more of the reprogramming factors is
largely dependent on the endogenous expression of these
factors in the donor cell type. For example, hiPSC deriv-
ation using the lentiviral system takes several weeks with
skin fibroblasts but only 10 days with keratinocytes, in
which the expression levels of Klf4 and c-Myc are much
higher [92]. Therefore, the best combination of reprogram-
ming factors is partly dependent on the hosting cell type.

Viral integration followed by excision: the Cre-Lox system
The problem of permanent integration of transgenes in
a host genome was partially solved by viral integration of
OSKM factors into the host genome followed by their
excision using the Cre-Lox recombinase system (Fig. 4).

Sox 2 Adenovirus
DNA virus

‘ Cytoplasm

Fig. 3 The integrating reprogramming method using viral transduction. The first method developed to deliver OSKM factors involved the use
of retro- and lenti-viruses. These delivery modes were chosen based on their high efficiency. However, these methods require the reverse
transcription of the delivered factors and their subsequent integration into the host genome, running the risk of induced genomic instability
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Fig. 4 Lox site. The 8-bp core sequence is flanked by two 13-bp inverted repeats

In mammalian cells, Cre-Lox recombination is widely
used to control gene expression, induce chromosomal re-
arrangement, or delete undesired DNA segments (Fig. 5)
[93, 94]. In the context of hiPSCs, LoxP-lentiviral vectors
containing either four (Oct3/4, Sox2, Klf4, c-Myc) or three
(Oct3/4, Sox2, Klf4) reprogramming factors flanked be-
tween two unidirectional LoxP sites have been employed
[95]. The hiPSCs are then transiently transfected with an
expression vector encoding Cre-recombinase that medi-
ates the excision of the integrated transgene (Fig. 5). This
has the advantage of inducing the generation of
transgene-free hiPSCs, favoring the translation of iPSC
technology into clinical applications. Despite the efficiency
of Cre-recombinase-driven excision and the advantages of
this approach, residual viral vector sequences can remain
at the sites of integration, which may in turn trigger un-
desirable downstream effects, while the overall reported
reprogramming efficiency remains very low.

Non-viral integration followed by removal: the PiggyBac
transposition

In order to avoid viral integration altogether, transposon-
based non-viral integration methods have been developed
using the PiggyBac (PB) transposon system. The PB trans-
posons are mobile genetic elements used to transpose
target sequences between vectors and chromosomal DNA
via a “cut and paste” mechanism (Fig. 6) [96]. The procedure
consists of co-transfecting cells with PB transposon vectors
(containing target sequence) and PB transposase expression
plasmids. The PB transposase recognizes specific inverted
terminal repeat (ITR) sequences located on both ends of the
transposon vector, efficiently removes the contents from the
transposon sites, and integrates them into TTAA chromo-
somal sites. Cells harboring an inserted PB vector are transi-
ently re-transfected with the PB transposase expression
vector. The PB transposase substantially re-excises the trans-
posons from the genome, “footprint”-free.

Viral Packaging
and delivery

Re-exc|5|on

Cre recombinase

Chromosomal DNA

Residual Lox P site

©>©©@©©&

Fig. 5 The Cre-Lox excision system. The DNA sequences for the OSKM factors are flanked by LoxP sites and delivered virally to the target cells
of interest. The Cre-recombinase is delivered in parallel in a similar manner. When expressed, the Cre-recombinase excises the sequences by
recombination of the two flanking LoxP sites. This excision will nevertheless leave a residual LoxP site at the site of the original insertion
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Fig. 6 The PiggyBac transposition system. The PiggyBac transposase has the ability to integrate into the genomic DNA of the host cell a DNA
sequence provided that it is flanked by ITR sequences. The same PiggyBac transposase can in turn excise this inserted material, leaving the
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Transgene-free iPSC lines were generated from human
embryonic fibroblasts (hEFs), human embryonic kidney
293 (HEK293) cells, and adult skin fibroblasts using the
PB transposon-based system [97]. This approach has
several advantages over the traditional viral integrating
methods for reprogramming. First, the plasmid DNA
and the transfection protocol used for cell delivery of PB
transposon vectors are innocuous and offer the oppor-
tunity to reprogram cell types that are prone to viral in-
fection. Second, the feasibility of the protocol and the
reliability of the PB transposase-mediated excision en-
hance the establishment of transgene-free hiPSC lines.
However, this approach results in low yields (<2%) of
bona fide iPSCs. Of note, it has been shown that the effi-
ciency of iPSC derivation from human adult fibroblasts
using PB transposon vectors is enhanced by 15- to
51-fold after addition of butyrate, a small-chain fatty
acid [98]. The mechanism of butyrate action includes
histone acetylation, DNA demethylation, and the expres-
sion of endogenous pluripotency associated genes.

Although remarkable progress has been made towards
safe and efficient reprogramming, the aforementioned
methods involve integration of transgenes into the host
genome with unpredictable interruptions to the host cell
genome and downstream consequences. In order to
avoid any permanent or transient genomic modifications
a safer approach for iPSC derivation is to avoid both
permanent and transient genomic modification. There-
fore, non-integrating methods for cell reprogramming
have been developed and considered.

Non-integrating reprogramming methods

Viral non-integrating method

The viral non-integrating method involves the gener-
ation of iPSCs using non-integrating viruses such as ade-
noviruses and sendai viruses for the delivery of OSKM
factors (Fig. 7). As opposed to retroviruses and lentivi-
ruses, these expression vectors do not integrate into the
host genome and show high-level expression of exogen-
ous genes [99-101]. So far, the adenoviral/sendaiviral
iPSCs display features of reprogrammed cells, express
endogenous pluripotency genes, and contribute to tissue
development in chimeric mice. Furthermore, viral gen-
ome and viral proteins were totally absent in iPSC clones
generated by adenoviral or sendaiviral transduction.
However, major issues are hindering the long-term suc-
cess of this method. For example, in most cases, iPSC
lines generated by adenoviral/sendiviral transduction
formed teratomas when injected into immunodeficient
mice [99-101]. Furthermore, Stadtfeld and colleagues
found that almost 25% of the adenoviral iPSC lines were
tetraploid, which is not seen in iPSCs produced with
retro- or lentiviral vectors [99]. The authors postulate
that adenoviral reprogramming either induces cell fusion
or, alternatively, selects for rare tetraploid cells pre-exist-
ing in the starting cell populations. In addition, the effi-
ciency of deriving iPSCs was ~ 100-fold lower than that
obtained with integrating viruses. This is probably due
to the fact that many cells do not maintain gene expres-
sion of OSKM factors long enough to trigger entry into
a pluripotent state.
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Fig. 7 Non-integrative methods using plasmids, sendaiviruses, or RNA delivery. Non-integrative methods (DNA- or RNA-based) have been
developed to overcome the increased risk of genomic instability and gene expression modifications encountered with integrative methods.
When RNA-based, the mRNA is delivered without reverse transcriptase and is directly translated into proteins. The RNA can be delivered directly
or using viruses. The DNA can also be directly delivered to the target cells in a form of self-replicating plasmid that will not integrate the host cell
genome. The plasmid is then transcribed to mRNA for translation to proteins. O Oct3/4, S Sox2, K Klf4, M c-Myc
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Non-viral non-integrating methods

Non-viral non-integrating methods consist of the deriv-
ation of iPSCs through virus-free and transgene-free
techniques. This relies on the induction of iPSCs by
transient transfection of plasmid DNA, minicircle DNA,
or synthetic RNA encoding OSKM factors, as well as the
direct delivery of recombinant proteins of OSKM factors
into the cells.

Plasmid DNA

When transfected into cells, plasmid DNA replicates in-
dependently of the genomic DNA without incorporating
into the genome of the host cells. Transgene-free
iPSCs have been produced from mouse [102] and human
[100, 103] fibroblasts by transient transfection with
plasmid vectors. In particular, hiPSCs were generated by
repeated transient transfection with three plasmids

expressing seven reprogramming factors. These factors
include Oct3/4, Sox2, c-Myc, Klf4, Nanog, and Lin 28,
along with Epstein-Barr nuclear antigen-1 (EBNA-1), and
SV40 large T antigen (SVLT), which allow stable extra-
chromosomal replication of the plasmid vectors [100].
Interestingly, the omission of the later factor resulted in
cell toxicity and disappearance of iPSC colonies. Although
the isolated hiPSCs were devoid of vector or transgene ex-
pression, the differentiation process remained extremely
low and required repetitive transfections.

Minicircle DNA

Minicircle DNA are small supercoiled derivatives of
plasmids that are free of all prokaryotic vector sequences
and are composed essentially of a small eukaryotic
expression cassette (~4 kb). The absence of bacterial
DNA backbone makes them powerful tools for genetic
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manipulation of mammalian cells. In addition, their
small size enhances their transfection capacity and con-
fers a long ectopic expression pattern compared to
standard plasmids [104, 105]. Minicircle vectors carrying
a cassette of the transcription factors Oct3/4, Sox2,
Lin28, and Nanog have been employed for derivation of
hiPSCs from adipose stromal cells [106] and neonatal fi-
broblasts [107]. No genomic integration of the minicircle
transgene has been detected in hiPSC subclones as con-
firmed by Southern blot analysis. However, the reprogram-
ming efficiency remains extremely low (0.0005-0.005%)
compared to viral integration techniques used for the ex-
pression of the same transcription factors [54, 55].

RNA delivery

The RNA-based method for somatic cell reprogramming
consists of delivering OSKM factors by repeated adminis-
tration of synthetic messenger RNA (mRNA), an approach
that overcomes viral genome integration or immune re-
sponses to foreign DNA. Multiple human cell types have
been reprogrammed using synthetic modified messenger
RNA [108]. Furthermore, the same technology has been
employed to differentiate the mRNA-induced iPSCs into
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myogenic cells. Recently, the use of selected microRNAs
(miRNAs) with or without OSKM factors has been shown
to be an efficient method of producing iPSCs [109-111].
The mechanism by which miRNAs enhance iPSCs repro-
gramming is unclear, but it could be related to their ability
to regulate the cell cycle [111]. Of note, several miRNAs
used in the reprogramming process are usually expressed
in ESCs and are thought to maintain the ESC phenotype
[112, 113]. The RNA-based method represents a promis-
ing strategy to reprogram somatic cells with less or no
genetic modifications, qualifying mRNA-reprogrammed
cells for clinical applications. Nonetheless, this approach
entails a small risk of genetic modification due to the
introduction of nucleic acids into the cell.

Protein delivery

The protein delivery method involves the direct delivery
of reprogramming factors (i.e., proteins) into the cell
(Fig. 8). Through this approach, hiPSCs have been
successfully generated from mouse [114] and human
neonatal fibroblasts [115] by direct delivery of the
OSKM factors conjugated with a cell-penetrating polyar-
ginine peptide. Of note, this method has an attractive

-
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Fig. 8 Direct reprogramming using transcription factors or small molecules. To avoid the use of genetic material, fibroblasts can also be reprogrammed
by the excessive delivery of OSKM factors in their protein form. The method consists of the incubation of fibroblasts with a large amount of OSKM factors
and their internalization by forced endocytosis. The factors then bind to DNA and directly induce the reprogramming of the target cells. The use of small
molecules and chemical compounds during the reprogramming process could significantly improve the efficiency of the reprogramming process




Abou-Saleh et al. Stem Cell Research & Therapy (2018) 9:201

advantage of being virus-free and does not include gen-
etic modification or DNA transfection. However, the low
reprogramming efficiency and the need for repeated
treatments represent the major limitations.

Improving iPSC reprogramming efficiency
Numerous chemicals and small molecules have been
shown to improve the efficiency of iPSC generation or
enable the reduction of the reprogramming factors re-
quired for pluripotency induction [116]. These mole-
cules and compounds can be divided into two groups: 1)
chromatin modifiers and 2) regulators of cell signaling
pathway [117]. For instance, valproic acid (VPA) is a
small molecule histone deacetylase inhibitor which has
been used to successfully reprogram foreskin fibroblasts
with only two factors: Oct3/4 and Sox2 [89]. The repro-
gramming efficiency was significantly improved when
VPA was applied to cells expressing high endogenous
levels of c-Myc and Klf4, such as keratinocytes or adi-
pose stromal cells [92, 118]. Other studies optimized the
reprogramming efficiency by combining two or three
small molecules with transcription factors. For example,
neonatal epidermal fibroblasts have been reprogrammed
by using Oct3/4 and Klf4 supplemented with CHIR99021
(Wnt signaling pathway activator) and Parnate (histone
demethylase inhibitor) [119]. Similarly, the combination of
SB431542 (transforming growth factor, TGF-P inhibitor),
PD0325901 (MEK inhibitor), and thiazovinin (cell-survival
enhancer) significantly promotes the reprogramming effi-
ciency of fibroblasts [119]. Also, the addition of vitamin C
together with VPA to serum-containing culture media im-
proved reprogramming efficiency by threefold compared
with VPA alone [120]. Despite the tremendous efforts
invested to achieve a high reprogramming efficiency, the
yields of bona fide hiPSCs have rarely exceeded 1%. Two
conflicting models have been proposed to explain the
renitence to pluripotency induction, namely the “elite”
and “stochastic” models [121, 122]. The elite model postu-
lates that only a small fraction of somatic cells, most likely
the tissue-resident stem cells, are subjected to reprogram-
ming. The stochastic model argues that under specific cul-
ture conditions, either tissue-resident stem cells or fully
differentiated cells can be successfully reprogrammed to a
pluripotent state in a stochastic fashion [64, 66, 123].
Further investigation is needed to establish a consensus
model that allows a better understanding of the
mechanisms of reprogramming at the multicellular and
single-cell levels.

Characterization of iPSC lines

Reprogramming of somatic cells is hindered by the het-
erogeneity of the derived iPSC lines, which affects their
differentiation potential into specific cell lineages. Even a
single reprogramming experiment could generate multiple
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iPSC lines which exhibit distinct molecular and functional
characteristics [124—126]. This problem is largely due to
the differential propensity to pluripotency induction
among cells and our limited understanding of the under-
lying reprogramming mechanisms. In this context, several
methods have been employed to evaluate the characteris-
tics of established iPSC clones. Whole genome expression
or quantitative reverse-transcription polymerase chain reac-
tion (QRT-PCR) can be used to assess the gene expression
signatures of the iPSC clones, while immunocytochemistry
and western blots are employed to examine protein expres-
sion. The differentiation potential of iPSC clones can be
assessed in vitro by embryoid body formation and in vivo
by teratoma formation after transplantation in animals. In
another exciting approach, Chan and colleagues attempted
to define the molecular signature of the fully repro-
grammed hiPSCs using in situ live cell imaging [127]. They
found that transgene silencing and expression of the
pluripotency markers TRA-1-60, DNA (cytosine-5-)-meth-
yltransferase 3 beta (DNMT3B), and REX1 marked the fully
reprogrammed state whilst alkaline phosphatase, SSEA-4,
growth differentiation factor 3 (GDF3), human telomerase
reverse transcriptase (WTERT), and Nanog are insufficient
as markers. Recently, Burridge and colleagues claimed to
have established culture conditions that circumvent the
interline variability of iPSC lines, which could significantly
facilitate the downstream characterization of the repro-
grammed iPSCs and increase the number of suitable iPSCs
for the needs of each project [128].

Host cells used for iPSC reprogramming

Fibroblasts

The vast majority of studies on hiPSC derivation from
somatic cells have employed dermal fibroblasts as the start-
ing population for reprogramming [129-131]. Fibroblasts
play an important role within the dermis and are respon-
sible for the synthesis of connective tissues and remodeling
of the extracellular matrix. They can be obtained from a
single skin biopsy followed by 3—4 weeks of in vitro incu-
bation to generate a sufficient amount of starting cell
population [132]. Their easy isolation and expansion ren-
ders them the best source of iPSCs. However, the efficiency
of reprogramming is very low, ranging from 0.0001%
(when using reprogramming factors without c-Myc) to
0.01% (in the presence of c-Myc) [53, 55, 89, 132]. In
addition, the time required for the formation of iPSCs is
relatively long and colonies usually take up to 2 months to
appear in culture [133]. However, recent reports suggest
approaches that increase efficiency of reprogramming of
primary fibroblasts [129, 130].

Keratinocytes
Keratinocytes, the most abundant cell type in the epider-
mis, are involved in the protection of the skin and
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provide strength to the hair and nails. One study has re-
ported the generation of iPSCs from keratinocytes ob-
tained from human foreskin biopsies and plucked hair
[71]. These cells showed a significant improvement in re-
programming efficiency and speed compared to skin fi-
broblasts. However, the keratinocytes used in this study
were derived from neonatal and juvenile individuals. In
yet another study, iPSCs were established from human
hair follicle keratinocytes, suggesting that some microen-
vironmental cues of hair follicles may allow for efficient
hair follicle re-differentiation [134]. Recently, integration-
free iPSCs have also been established from keratinocytes
of healthy donors [135].

Melanocytes

Melanocytes are skin-specialized cells responsible for the
production of melanin, the darkening pigment of the
skin. Similar to fibroblasts and keratinocytes, melano-
cytes have been derived from skin biopsies and expanded
in vitro [75]. When compared to fibroblasts, these cells
showed a higher reprogramming efficiency and speed
using the four OSKM factors. Interestingly, melanocytes
express high endogenous levels of Sox2 and can be repro-
grammed with only three factors (Oct3/4, Klf4, and
c¢-Myc). Unfortunately, the age of the melanocyte donor
was not indicated in this study, thus limiting the compari-
son with other cell types. More recently, a new protocol
for deriving iPSCs from melanocytes in serum-free culture
has been described [136], making their application in re-
generative medicine potentially more feasible.

Fetal neural stem cells

The major advantage of fetal neural stem cells is their
ability to be reprogrammed using only the Oct3/4 factor
[77]. However, their fetal origin makes the comparison
to other cell types difficult, while the invasive procedures
required for their isolation limits their potential usage.

Cord blood cells

Cord blood cells (CBCs) have also been used to derive
iPSCs. In fact, CD133" cells isolated from freshly iso-
lated or cryopreserved cord blood units have been repro-
grammed to iPSCs using Oct3/4 and Sox2 [69]. Another
study has reported the generation of iPSCs from cord
blood-derived endothelial cells using Oct3/4, Sox2,
Nanog, and Lin28 [70]. CBCs can be readily collected
from the umbilical cord at birth without invasive proce-
dures. Unlike ASCs, CBCs are neonatal stem cells which
have a reduced risk of acquiring and transmitting somatic
mutations onto the derived iPSCs and retain the immuno-
logical immaturity of neonatal cells. However, CBCs com-
prise different populations of cells, including HSCs [137],
mesenchymal stem cells [19], and endothelial progenitor
cells [138]. This mixing of cells could generate a
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heterogeneous population of derived iPSCs with low re-
programming efficiency [69, 70]. Of note, patient-specific
CBC-derived iPSCs would be available for patients who
had their cord blood banked at childbirth. Thus, the long
cryopreservation time may alter the reprogramming effi-
ciency and the regenerative therapy of these cells.

Peripheral blood CD34" cells

CD34" cells are a subset of stem cells with a therapeutic
potential against multiple hematologic malignancies and
immunodeficiency disorders. Cells expressing CD34" are
normally found in the bone marrow; however, the adminis-
tration of some cytokines, such as the granulocyte
colony-stimulating factor (G-CSF) and the granulocyte-
macrophage colony-stimulating factor (GM-CSF) enhance
their trafficking to the peripheral blood [139]. This process,
known as stem cell mobilization, can markedly increase the
number of circulating CD34" to ~ 1% of the total cell count,
offering an abundant source of progenitor cells for repro-
gramming [140]. Peripheral blood CD34" cells have been
used as a starting population for iPSC derivation using the
OSKM factors [24]. So far, the reprogramming efficiency of
these cells is comparable to skin fibroblasts. However, in
vitro expansion of CD34" cells is challenging. Furthermore,
the intake of G-CSF for mobilization may lead to undesir-
able effects, especially in patients with cardiovascular dis-
eases such as headache, nausea, and bone pain [141].

Adipose-derived stem cells

Adipose tissue is a specialized connective tissue derived
from embryonic mesenchyme that contains a mixture of
multipotent stem cells that have the potential to differenti-
ate into multiple cell lineages, including bone, cartilage, and
muscle [26, 142, 143]. Adipose-derived stem cells (ADSCs)
are derived by aspiration of adipose tissue (lipoaspiration)
and can be directly reprogrammed to iPSCs using the four
OSKM factors [76]. A high amount of ADSCs could be col-
lected from a small amount of lipoaspirates following a
short culture period (~48 h). In addition, the reprogram-
ming of ADSCs does not require the support of mouse
feeder cells for the reprogramming, thereby avoiding the
possibility of contaminating the derived iPSCs with animal
pathogens. In comparison with human fibroblasts, the
reprogramming efficiency of human ADSCs was 20-fold
higher and twofold faster and the expression levels of Kif4
and c-Myc are relatively high [76, 118]. The abundance of
adipose tissue, the ease of harvesting of ADSCs, the pluri-
potency capacity, and the low morbidity put ADSCs at the
top of the somatic cell list for use in reprogramming.

Saving the failing heart: iPSC differentiation into
cardiomyocytes

In spite of promising pharmacological and surgical inter-
ventions in CVD, heart transplantation remains the sole
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therapeutic option for end-stage heart failure. Alterna-
tive approaches may include the refurbishment of the
CM population to rescue the failing myocardium and re-
store heart function. The derivation of CMs from hiPSCs
is a novel therapeutic strategy that could transform the
future of cardiovascular medicine. However, the estab-
lishment of differentiated CMs that fulfill this purpose
requires a substantial improvement of hiPSC culture
methods and CM differentiation. Various methods have
been described to induce the differentiation of iPSCs
into CMs. These methods are closely related to those
traditionally employed for the derivation of CMs from
hESCs, since hiPSCs and hESCs share similar character-
istics and differentiation potential.

Small-scale protocols of differentiation

In general, three small-scale PSC-to-CM differentiation
strategies have been implemented: 1) embryoid body
(EB) formation assays; 2) co-culture of undifferentiated
PSCs with a visceral endodermal cell line (END-2); and
3) a confluent PSC monolayer in the presence of defined
cardiogenic growth factors (Fig. 9).

Embryoid body formation assays

EB formation assays are the most common method to
generate CMs from iPSCs. EB assays involve the growth
of undifferentiated iPSCs as aggregates in suspension,
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causing them to form structures called EBs [144—147].
Formation of EBs has been reported with different ap-
proaches, including static suspension culture, hanging
drops, and forced aggregation, followed by stage-specific
application of cardiogenic factors. Under serum-free con-
ditions that do not support pluripotency and with the sup-
plementation of several cytokines, such as activin A and
BMP4, EBs can efficiently differentiate into beating CMs
[147-152]. Zhang and colleagues reported the derivation
of functional CMs from the EBs of hiPSCs that were lenti-
virally transduced with Oct3/4, Sox2, Nanog, and Lin28
[153]. These hiPSC/EB-derived CMs were comparable to
those generated from hESCs and expressed similar pheno-
typical, structural, and functional characteristics. More
specifically, cultures of hiPSC-derived CMs have shown
down-regulation of Oct3/4 and Nanog as well as upregu-
lation of cardiac genes, contractile protein expression, and
sarcomeric organization. Moreover, the cells generated
atrial, nodal, and ventricular action potentials (APs) and
responded adequately to electrical stimulation and
pharmacological activation of the B-adrenergic signaling
pathway. The authors noted that the contractility of
hiPSC-CMs was less than that of hESC-CMs and the si-
lencing of the transgenes Oct3/4 and Nanog was not as ef-
ficient. However, these differences normally occur among
cell lines derived from the same PSC population and are
shared between all differentiation methods.

Embryoid bodies formation in low
attachement plate with cytokines

N

Co-culture with stromal cells
(END2, Endothelial cells)

@ y Cardiomyocyte Purification

Fig. 9 In vitro differentiation of CMs from hiPSCs. Three main methods are documented for differentiation of hiPSCs into CMs. The most
documented, directed cardiac differentiation, is achieved with sequential cytokine stimulation following the culture of hiPSCs in low adherent

Undifferentiated hESC/hiPSC

2D Culture differentiation on
matrigel with cytokines

Cardiac Regeneration,
pathogenic study and drug screening

culture plates, forcing the cells to aggregate into so-called embryoid bodies. Alternatively, the same type of sequential cytokine stimulation was
also proven successful when cells are kept in 2D conditions. Finally, a “natural” differentiation into CMs was documented following co-culture of
hiPSCs with END-2 endothelial cells. CM cardiomyocyte, END-2 endodermal cell line-2, hiPSC human induced pluripotent stem cell




Abou-Saleh et al. Stem Cell Research & Therapy (2018) 9:201

Co-culture of PSCs with visceral endoderm-like cells

Visceral endoderm is an extraembryonic cell layer formed
in the early stage of embryonic development that secretes
critical factors involved in embryonic development. Mum-
mery and colleagues reported that co-culture of human
and mouse PSCs with visceral END-2, derived from mouse
P19 embryonal carcinoma cells, can efficiently induce their
differentiation into CMs [150, 154, 155]. Although the
cardio-inductive mechanism of END-2 is unclear, the tran-
scriptome and secretome profiles have been determined
[156, 157]. Analysis of the serum-free media conditioned
by END-2 revealed that SB203580, a specific p38 MAP
kinase inhibitor, and prostaglandin E are potent promoters
of cardiac differentiation [158], whereas insulin or insulin
growth-factor-1, activators of the PI3/Akt signaling path-
way, act as potent inhibitors [158, 159].

Confluent PSC monolayer differentiation by specific
cardiogenic growth factors

This method consists of direct differentiation of iPSCs
towards the cardiac lineage by sequential addition of de-
fined growth factors known to induce cardiac develop-
ment in various animal models. This sequential addition
of specific growth factors aims to recapitulate, in vitro,
the embryonic development of heart tissue. Nodal sig-
naling in the ectoderm evokes mesoderm induction, thus
marking the onset of gastrulation. The role of Nodal in
the development of germ layers and the primitive streak
is crucial. Indeed, loss of Nodal function has been shown
to lead to loss of mesoderm and excessive ectoderm, as
well as embryonic lethality during early gastrulation
[160, 161]. When gastrulation ensues, mesodermal cells
start to emerge from the primitive streak. Among the
earliest cell lineages to emerge are cardiac progenitor
cells. These cells express a myriad of mesoderm genes,
including Wnt3, Brachyury T, BMP4, and MESP-1 [162—
164]. As a major determinant of cardiovascular lineage
commitment, MESP-1 orchestrates the increased expres-
sion of several transcription factors involved in cardiac
differentiation and maturation, such as GATA4, NKx2.5,
Mef2c, and Tbx5 [165, 166]. Moreover, by virtue of its
ability to directly inhibit Wnt and Nodal via DKK1 and
CER1, MESP-1 imparts a strong repressing effect on
early mesoderm induction [167, 168]. Based on the
above, approaches that stimulate human PSCs with suc-
cessive rounds of recombinant growth factors such as
basic fibroblast growth factor (bFGF), BMP4, Wnt3, and
Activin A, followed by addition of DKK1 or other Wnt
inhibitors, have been employed to induce cardiac differ-
entiation [148, 149, 169]. In addition, other modulators
such as Noggin [170], VEGF [148], CHIR and IWR-1/
IWP-2 [171, 172], TGE-P signaling inhibitor [173], and
SHH signaling activation [173] have been shown to
increase the differentiation efficiency.
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Large-scale protocols

Although small-scale protocols are successful in producing
a high percentage of iPSC-derived CM, they suffer from
limited scalability, limited reproducibility, and heterogen-
eity. Moreover, large animal models, high-throughput
assays, and tissue engineering need a constant supply of bil-
lions of CMs, which require, more advanced and scalable
strategies. Large-scale production using 2D culture was
successfully achieved by scaling out the culture surfaces.
This approach, however, is not cost- or space-efficient.
Therefore, mass production of PSC-derived CMs was suc-
cessfully implemented using 3D industry-compatible plat-
forms. Such platforms include matrix-dependent cultures,
such as microcarrier suspension cultures and sphere cul-
ture with gellan gum polymer, and matrix-independent sus-
pension cultures, including spinner flasks and bioreactors.
Transition to 3D cultures require the generation of suspen-
sion aggregates from dissociated clumps, microcarriers,
self-assembling aggregates, or forced aggregation by micro-
patterning. Maintenance of aggregates in homogenous
conditions is achieved by rocking, agitating, or stirring
the culture depending on the platform format being
used. Multiple studies have successfully produced high
yields of ventricular-like CMs in a large scale and from
different hPSC lines using multiple chemical modula-
tors and different bioreactors [172, 173]. Excellent re-
views describing large-scale techniques in detail can be
found elsewhere [174, 175].

Improving CM differentiation
Several approaches geared towards improving the differen-
tiation and maturation of iPSC-derived CMs have been
suggested. Some of these promising strategies include
knockdown of certain genes [176], bioreactors [177], hyp-
oxic culture conditions [178—181], controlled feeding strat-
egies and variation in chemical supplementation [172, 173],
as well as aggregation of iPSC-derived EBs in chemically
pre-defined medium [126]. Combining hypoxia and bio-
reactor hydrodynamics to boost iPSC differentiation into
CMs has been established [177]. Correia and colleagues ex-
plored the impact of dissolved oxygen (DO) at 4% tension
and mechanical forces using two distinct bioreactor sys-
tems, namely WAVE (high mechanical loading frequency)
and stirred tank (low mechanical loading frequency) biore-
actors [177]. They found that intermittent agitation with
changes of stirring direction in stirred bioreactors led to
high cell lysis and low CM numbers, but higher yields when
compared to normoxic conditions (20% O, tension) [177].
This is in line with other bioengineering technologies that
are geared to transform the discipline of regenerative medi-
cine [182].

With WAVE bioreactors, however, wave-induced agi-
tations and high mechanical loading led to sixfold lower
increase in cumulative lactate dehydrogenase (LDH)



Abou-Saleh et al. Stem Cell Research & Therapy (2018) 9:201

with higher CM yields and faster kinetics compared to
stirred tanks. Additionally, 97% CM purity by puromycin
selection was achieved in 2 days (total 11 days of differ-
entiation) with WAVE bioreactors versus 7 days (total
16 days of differentiation) with stirred tank cultures
[177]. These findings are interesting since it is been
shown that CMs isolated at day 11 of differentiation sur-
vived cardiac engraftment following intramyocardial
transplantation better compared to CMs differentiated for
16-18 days [183]. Ting and colleagues also demonstrated
that an intermittent rocking platform (Wave type) to inte-
grate micro-carrier suspension resulted in much higher
CM yields than stirring platforms, which showed reduced
CM yields compared to static microcarrier cultures [184].

Another strategy consists of replacing the mouse em-
bryo fibroblast (MEFs) feeder layer with human cells.
Current methods of hiPSC culture involve the utilization
of a feeder layer of MEFs. These inactivated MEFs are
known to promote the proliferation of hiPSCs as well as
to maintain them in an undifferentiated state. This, how-
ever, is not without the risk of exposing the cultured
hiPSCs to animal contaminants. Attractively, however,
and as has been published with hESCs, MEFs can be ef-
ficiently replaced by culturing autologous skin fibroblasts
obtained from the same donor/patient [185, 186]. Alter-
natively, matrigel-coated surfaces have also been utilized
with promising results [187]. Application of a layer of
synthetic matrices over the monolayer culture (sandwich
method) in addition to the sequential application of
growth factors further promotes hPSC-CM differentiation
[188]. Burridge and colleagues developed an optimized
cardiac differentiation that produced contractile sheets of
up to 95% troponin-positive cardiomyocytes in 11 hiPSC
lines. Their strategy was based on using synthetic matrices
and a chemically defined medium consisting mainly of
RPMI 1640, L-ascorbic acid 2-phosphate, and rice-derived
recombinant human albumin along with other small mol-
ecules [189].

In an attempt to define the various molecules that could
promote differentiation of iPSCs to CMs, a high-through-
put screening system has been developed. Some of the
identified molecules include resveratrol [190], vitamin C
[120], cyclosporine A [191], and triiodothryonine [192].
Moreover, it was reported that differentiation and matur-
ation of hESCs and hiPSCs may be potentiated by activa-
tion of Wnt/B-catenin signaling [193] or by exogenously
expressing human apolipoprotein-A1 [194]. These cardio-
genic effects are thought to be mediated by the BMP4/
SMAD signaling pathway. Of note, manipulation of differ-
entiation protocols using different protein factor concen-
trations and treatment strategies, matrix components, or
SMs resulted in large variations in CM differentiation effi-
cacy among different cell types and lines, suggesting the
importance of optimization procedures [173, 174, 195,
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196]. In addition to different protocols, a key player that
influences the differentiation potential is the cellular origin
of iPSCs [197]. This is not surprising given the notion of
“epigenetic memory” of iPSCs, which dictates various as-
pects of gene expression and differentiation potential
[197-199]. iPSCs derived from cardiac lineage cells are be-
lieved to be more effective for transplantation and engraft-
ment than non-cardiac lineage-derived iPSCs [190, 200,
201]. Sanchez-Freire and colleagues compared the effect
of human donor cell source on CM differentiation and
function of derived iPSCs [200]. They found that human
cardiac progenitor cells (CPCs) have higher CM differenti-
ation efficiency than human skin fibroblasts of the same
donor due to epigenetic differences. However, iPSC-CMs
derived from both cell types have similar therapeutic cap-
abilities after implantation in an animal MI model [200].
Chun and colleagues studied the impact of different types
of anisotropic mechanical strain on iPSC-CMs derived
from skin fibroblasts of healthy versus dilated cardiomy-
opathy (DCM) patients [202]. They revealed that genetic
backgrounds carried from healthy and DCM patients
highly influence responses to different types of strain con-
ditions [202].

In summary, many factors play critical roles in influen-
cing the differentiation of iPSCs to CMs. Some of these
include the starting cell population, cardio-inductive
molecules and growth factors, as well as culturing condi-
tions. Empirically determined optimum employment of
these factors is key for successful and efficient differenti-
ation of iPSCs to CMs.

Purification and enrichment of iPSC-derived CMs

Subsequent to differentiation, CMs need to be purified
and enriched. To this end, several commonly methods are
employed. These include the use of a pulled-glass micro-
pipette for manual separation [151], density gradient-
based separation [203], fluorescence-activated cell sorting
(FACS) [204], metabolic purification [205], as well as anti-
biotic selection [206]. While manual dissection/separation
or density gradient-based separation show limited success
at enrichment, antibiotic selection yields significantly
higher CM purity [177]. The use of FACS is due to the
ability of this technique to provide a positive selection of
CMs that are phenotypically different from other cells. To
this end, a set of surface proteins can be used as markers
for the enrichment of CMs. These include CD166 [207],
vascular endothelial growth factor receptor 2 (VEGFR2)
and platelet-derived growth factor receptor-a (PDGFR-a)
[208], elastin microfibril interface 2 (EMILIN2) [209], sig-
nal regulatory protein-a (SIRPA-«) [210], and vascular cell
adhesion proteinl (VCAMI) [210, 211]. A major limita-
tion for this approach is the lack of specific CM surface
markers that could identify and select cardiac progenitor
cells from a pool of differentiating/undifferentiating cells



Abou-Saleh et al. Stem Cell Research & Therapy (2018) 9:201

[212]. To overcome this problem, genetically modified
hESC lines that allow for selection of terminally differenti-
ated CMs have been developed. This approach is based on
the expression of a reporter gene (such as green fluores-
cent protein (GFP)) that has been fused to the regulatory
sequence of a cardiac-specific gene like MYH6 [213],
Nkx2.5 [211], myosin light chain 2 V (MLC2V) [214], or
insulin gene enhancer protein 1 (ISL1) [215]. Mitochon-
drial labeling with a fluorescent dye has also been
postulated to be a good selective marker of hESC/hiPSC-
derived CMs [204]. Indeed, this approach, combined with
FACS, has been shown to generate very highly enriched
(>99% pure) CMs [204]. It is important to note that
although more homogenous EBs can be established via
massive suspension culture systems, a significant number
of iPSCs did not differentiate and thus still carried a
strong potential for teratoma formation [205]. Interest-
ingly, in this very study, metabolic purification of CMs
using a glucose-depleted and lactate-enriched medium
proved to be powerful in eliminating undifferentiated
iPSCs, thus generating purer iPSC-derived CMs [205].

It is important to note that a major limiting step for
SCT in cardiac regeneration is the purification and enrich-
ment of stem cell-derived CMs. While several approaches
for this goal have been employed, their efficiency remains
somewhat debatable. There is an agreement, however, that
for any such method of purification to be efficient, it
ought to be fast, specific, and scalable with no genetic
modifications. It is then that such a method can be viewed
as a potential therapeutic approach for the use of
iPSC-derived CMs in the cardiology clinic.

Characterization of iPSC-derived CMs: structural
and functional properties

Following purification, the iPSC-derived CMs need to be
characterized to ensure they have the expected characteris-
tics. The study of structure and function of iPSC-derived
CMs is complicated by the fact that the differentiation
method [216] and culture conditions [217] may strongly
influence phenotype. It is also unclear whether hESC-CMs
and iPSC-CMs have different phenotypes. Such method-
or cell type-related variation would have significant impli-
cations for CM use in both cell therapy and disease model-
ing. Structure and function in CMs are intimately related
and could be assessed using different techniques, including
live cell imaging, molecular biology, electrophysiology, and
HPLC mass spectrometry (HPLC-MS).

Live cell imaging

Live cell imaging yields a large number of cellular mea-
surements that can be used to monitor multiple aspects
of cell structure and function. Ultrastructural analysis
shows that hESC-CMs develop in vitro from spheroidal
cells to elongated cells with a more organized sarcomeric
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pattern [218] (Fig. 10). Transmission electron micros-
copy (TEM) of the hESC-CMs at varying developmental
stages shows progressive ultrastructural maturation from
an irregular myofilament distribution with parallel nas-
cent Z-bands containing myofibrils to a more mature
sarcomeric organization containing well-defined sarco-
meres with recognizable A, I, and M-bands in older
hESC-CMs [217-219]. iPSC-CMs also have functional,
albeit immature, sarcomeric structures [220] and com-
parative studies between hESC-CMs and iPSC-CMs have
not shown any difference in ultrastructural phenotype
[153]. EM revealed abundant myofibrillar bundles and
developed mitochondrial structure in both neonatal
mouse CMs and iPSC-CMs. However, iPSC-CMs
contained fewer mitochondria with lower density cristae
[221]. In addition, Ca** fluorescent dyes and confocal
laser scanning microscopy are commonly used to detect
the presence of intact Ca®* handling proteins and assess
Ca®* signaling in differentiated CMs [11, 133, 222].
Higher resolution microscopy like two-photon excitation
has also been employed to assess the functional coupling

Fig. 10 Myosin heavy chain (MHC, green) and nuclear (DAPI, blue)
staining of hESC-CMs without (@) and with (b) characteristic sarcomeric
striation patterns, compared with ¢ adult rat ventricular myocyte.

Scale bar is 20 um. Figure reproduced with permission of Rao and
colleagues. Phenotype and developmental potential of cardiomyocytes
from induced pluripotent stem cells and human embryonic stem cells.
In: Ainscough J. et al. eds. Nuclear reprogramming and stem cells.
Humana Press, 2011 (159). CM cardiomyocyte, hESC human embryonic
stem cell
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(synchronous Ca* transients) between host and differ-
entiated CMs [223-225]. Recently, Vondriska and col-
leagues used super resolution stimulated emission
depletion (STED) microscopy to investigate chromatin
rearrangements in CMs following the induction of cellu-
lar hypertrophy [226]. STED imaging techniques can
provide spatial resolution that is below the diffraction
limit, approaching virtually molecular resolution [227].
They are valuable for the characterization of iPSC-de-
rived CMs and provide novel insights into the structural
organization of the differentiated CMs and the dynamics
of molecular interactions and cell coupling. Liu and col-
leagues studied the immunogenicity and rejection of
iPSC and iPSC-CM allogenic transplants in murine is-
chemic myocardium using bioluminescent imaging (BLI)
[228]. Their findings revealed that unlike iPSCs,
iPSC-CMs and iPSCs differentiated in vivo possess high
immunogenicity and are immediately recognized and
rejected by the immune system. Immunosuppression
stopped this but increased the risk of teratoma formation
[228]. Of note, in a separate study, iPSC-CMs efficiently in-
tegrated into the healthy myocardium 2 weeks following
their transplantation into nude rat hearts [221]. These con-
tradicting findings suggest that iPSC-CM viability and inte-
gration into the myocardium might be disease-dependent.

Molecular biology

Among the different evaluation approaches, molecular biol-
ogy, immunocytochemistry, qRT-PCR, and phosphoproteo-
mic assays are also used to characterize the functional
properties of iPSC-derived CMs. Immunocytochemistry
uses antibodies that target specific peptides or protein anti-
gens in the cell via specific epitopes. It is a valuable tool to
detect the presence of gap junction proteins (e.g., connex-
ins) at the borders of differentiated CMs where they
mediate functional coupling with host CMs [220, 229, 230].
Immunocytochemistry revealed that the major contractile
protein in neo-CMs, B-MHC, was similarly expressed in
both neonatal mouse CMs and iPSC-CMs, although adhe-
sion molecules such as N-cadherin, a-dystroglycan, and
laminin-a2 were less expressed in iPSC-CMs compared to
neonatal mouse CMs [221]. Interestingly, transplantation of
iPSC-CMs into adult nude rats increased their a-MHC
expression, an adult CM-specific molecule, but to a lesser
extent than the adult and fetal murine heart [221]. Adhe-
sion molecule protein expression was also detected in
iPSC-CMs post-transplantation. These findings strongly
support the integration efficiency of iPSC-CMs into the
adult myocardium and their capacity to potentially restore
myocardial function [221]. In addition, immunocytochem-
istry has been used to detect the presence of various
structural and functional cardiac proteins, such as
sarcomeric a-actinin, CTNT, connexin43, a-sarcoglycan,
tropomyosin, potassium/sodium hyperpolarization-activated
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cyclic nucleotide-gated channel 4 (HCN4), Nkx2.5,
GATA4, and ANP [153, 221, 230-232]. Quantitative
RT-PCR is the next best option to assess the cardiogenic
potential of iPSC-derived CMs. It enables reliable detection
and quantification of pluripotency and cardiac gene ex-
pression levels in differentiated CMs. These data are crit-
ical for demonstrating the pluripotency of iPSC lines and
for assessing the functionality of CMs. qRT-PCR has been
employed in multiple studies to determine the expression
levels of stemness genes like OSKM, Nanog, GDF3, REX1,
and TERT in iPSCs during their differentiation into func-
tional CMs [11, 12, 153, 233], and similarly in other studies
by measuring the expression levels of cardiac genes like
Nkx2.5, GATA-4, MEF2C, Tbx5, CTNT, MYHS, a-actinin,
myosin light chains (MLCs), myosin heavy chains (MHCs),
phospholamban (PLN), ANP, and natriuretic peptide
precursor type A (NPPA) [153, 231, 234]. In addition to
immunohistochemistry and qRT-PCR, quantitative phos-
phoproteomic assays have been used to characterize ESC/
iPSC functional properties in physiological and patho-
logical conditions [12, 206, 235, 236]. Phosphoproteomics
is a branch of proteomics that assesses the phosphorylation
of proteins as one of the most important post-translational
modifications. Protein phosphorylation acts as a molecular
switch to activate or inactivate different proteins. It is a
critical event for regulating cellular processes, including
cell cycle, growth, differentiation, and signal transduction
pathways [237, 238]. During the differentiation process of
PSCs, the emerging phosphoproteomic methods enable
the deciphering of the cellular signaling that drives cells
from pluripotency to specific fates [236, 239, 240].

Electrophysiology

The electrophysiological properties of iPSC and ESC-de-
rived CMs can be characterized using whole cell patch
clamp, allowing measurement of action potential (AP)
characteristics and specific cell membrane ion currents.
Whole cell patch clamp is generally performed on indi-
vidually isolated CMs. AP characteristics can also be
measured from multi-cellular preparations using sharp
impalement, or non-invasively using voltage-sensitive
dyes. AP characteristics can be inferred from measure-
ment of the field potential by plating individual cells or
multi-cellular preparations onto multi-electrode arrays
(MEA). MEA and voltage-sensitive dyes also allow AP
conduction velocity and propagation patterns in
multi-cellular preparations to be measured. AP recorded
from iPSC and ESC-derived CMs with morphologies re-
sembling nodal (pacemaker) tissue, atrial, and ventricu-
lar tissues have been widely described in the literature. It
is unclear if this demonstrates distinct populations of
cells committed to differentiation into these three sub-
types of mature CMs or simply a population of imma-
ture CMs with a heterogeneous phenotype. Cells with
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“ventricular” AP, for example, often have a high degree
of automaticity and an upwards sloping phase 4, which
is more typical of nodal cells in adult myocardium.
Interestingly, some groups report that the iPSC differen-
tiation method seems to affect the electrophysiological
phenotype (Fig. 11). For instance, differentiation protocols
based on EBs lead to equal numbers of ventricular- and
atrial-like cells whereas the END-2 co-culture method re-
sults in homogeneous populations of ventricular-like cells
[154]. Pharmacologically, several groups reported that iPSC-
and ESC-derived CMs have similar responses to pharmaco-
logical agents as adult CMs, suggesting expression of ion
channels and key receptors resembling adult CMs. In par-
ticular, pharmacological blockade of the rapid delayed recti-
fier potassium (I,) channels results in the prolongation of
the AP duration in ESCs and iPSC-derived CMs, whilst
blockade of calcium channels results in the shortening of
the AP duration [10, 216, 217, 220, 232, 241]. Chronotropic
responses to adrenergic stimulation have also been re-
corded [10, 147, 151, 216, 220, 232].

HPLC-mass spectrometry

Structural changes following cellular differentiation can be
assessed using analytical chemistry methods. Kawamura
and colleagues analyzed N-glycan transition during iPSC-
CM differentiation using HPLC-MS methods [242]. Cell
surface glycans are functional proteins with multiple roles,
including cell-cell adhesion, cell activation, and cellular
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response to growth and arrest. Expression patterns of cell
surface glycans change during differentiation as shown in
ESCs [243]. In their study, Kawamura and colleagues iso-
lated 68 different N-glycans and identified the structures
of 60 of these proteins. Isolated N-glycans were analyzed
based on their HPLC elution positions and MALDI-TF/
MS. Findings showed structural differences between
iPSCs, iPSC-CMs, and mouse myocardium. Decreases in
high mannose and neutral N-glycans versus increases in
focusylated, monosialyl, and disialyl N-glycans were ob-
served when comparing iPSCs to iPSC-CMs to mouse
myocardium sequentially. Additionally, some structural
differences were detected between iPSC-CMs and mouse
myocardium. The murine myocardium was especially rich
in NeuGe-type sialyl structures, which corresponded to
cytidine monophosphate-N-acetylneuraminic acid hydro-
xykase (CMAH) expression that was relatively limited in
the heart. iPSC-CMs also expressed several unique glycans
with Galal-6Gal structure [242]. The pattern of N-glycan
distribution revealed in this study could be used as a
platform for future investigations in order to define
markers of maturity following iPSC-CM transplantation
into the myocardium.

In summary, iPSC- and ESC-derived CMs appear to re-
semble the biochemical and molecular signatures of adult
CMs, along with some of their structural and functional
properties. However, some iPSC- and ESC-derived CMs
retain the phenotype of immature myocytes. Whether this
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Fig. 11 a Different action potential phenotypes recorded from hESC-CMs. Figure reproduced with permission of Rao and colleagues. Phenotype
and developmental potential of cardiomyocytes from induced pluripotent stem cells and human embryonic stem cells. In: Ainscough J. et al. eds.
Nuclear reprogramming and stem cells. Humana Press, 2011 (159). b Diagram of an idealized adult human ventricular action potential. The
phases of the action potential are labeled (phases 0-4). The predominant cardiac ion currents at each point in the action potential are labeled
(Ing = sodium current, /,, = transient outward potassium current, I, = calcium current, Iy, = rapidly activating delayed rectifier potassium current,

Igs = slowly activating delayed rectifier potassium current, Ix; = inward rectifier potassium current). Figure reproduced with permission of Rao and
colleagues. Phenotype and developmental potential of cardiomyocytes from induced pluripotent stem cells and human embryonic stem cells. In:
Ainscough J. et al. eds. Nuclear reprogramming and stem cells. Humana Press, 2011 (159). CM cardiomyocyte, hESC human embryonic stem cell,
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affects their utility in regenerative medicine or as disease
models is not apparent and will be further discussed in
the following sections.

Cardiovascular disease modeling

Disease modeling is an integral component of research
efforts to understand the pathogenic mechanisms of
CVDs and unveil promising therapeutic targets. Al-
though large and small animal models have been
extensively used for modeling human CVDs, they are
expensive, ethically problematic, and their contribution
to understanding human disease is arguably limited by
their fundamental biological differences. hESCs, whilst
also ethically problematic, have also been explored as
CVD models by introducing causative human gene mu-
tations into hESCs and inducing their differentiation
into functional CMs in vitro. iPSCs have significant ad-
vantages over ESCs as they are derived from somatic
cells, circumventing most ethical objections to ESC tech-
nology, and carry genetic mutations as well as any other
modifier genes and contributing genetic factors, poten-
tially facilitating recreation of patient-specific disease
phenotypes in vitro.

However, literature shows that iPSC-derived CMs are
structurally, functionally, and genetically similar to early
embryonic CMs [244]. Despite maturation in culture,
these cells are arrested at a phase corresponding to the
late embryonic/early neonatal stage [245]. This could po-
tentially mask a disease phenotype due to differential ex-
pression of proteins with interfering or modulatory
functions [246]. As well, with most cardiomyopathic
manifestations appearing in adulthood, it becomes im-
perative to direct iPSC-derived CMs to complete matur-
ation. To this end, studies have used mechanical and
electrical stimulation approaches in vitro to promote
structural and functional maturation [247-249]. Others
used varied culture substrate/arrangement to enhance
maturation [250, 251]. In addition, work with native car-
diac extracellular matrix in a 3D culture system im-
proved iPSC-derived CM maturation [252]. A recent
study used a different approach to obtain mature human
iPSC-derived CMs [253]. Human iPSCs were differenti-
ated in vitro into cardiac progenitor cells that were later
transplanted into rat neonatal hearts. Within one month
of transplantation, these cells developed into adult CMs
and revealed patient-specific disease phenotype.

Modeling long-QT syndromes

iPSCs were first used to replicate a cardiovascular dis-
ease phenotype in vitro by Moretti and colleagues [10].
They compared wild-type cells with patient-specific
iPSC-CMs containing an inherited autosomal dominant
[596G—A] missense mutation in the KCNQI gene asso-
ciated with LQTS1. Using single-cell patch clamp assays,
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the authors found that patient-specific iPSC-CMs dis-
played prolonged atrial and ventricular APs and reduced
repolarization velocity compared to wild-type cells. Fur-
thermore, electrophysiological analysis showed reduction
in the slow outward potassium current (I) in ventricu-
lar patient-specific iPSC-CMs compared with controls
(Table 2). In contrast to wild-type cells, p-adrenergic
stimulation of ventricular patient-specific iPSC-CMs
with isoproterenol had no significant effect on the
repolarization and I currents (Table 2). Additionally,
immunocytochemical analysis of patient-specific CMs
showed impaired protein trafficking and membrane de-
livery which correlated with the disease phenotype. Two
other studies modeled LQTS2 using similar methods.
Itzhaki and colleagues derived iPSC-CMs from a patient
with LQTS2 containing a missense mutation in the
KCNH2 gene, which affected the delayed rectifier
potassium channel (I) [229]. The derived iPSC-CMs
displayed the electrophysiological abnormalities of the
disease, including prolonged AP duration and reduced
repolarization velocity. As expected, the I, was signifi-
cantly reduced in patient-specific cells in which an in-
creased sensitivity to arrhythmogenic agents was detected.
The authors further tested the therapeutic effect of nifedi-
pine (antihypertensive), pinacidil (vasodilator), and ranola-
zine (antianginal) on the electrophysiological properties of
diseased iPSC-CMs. The drugs were found to shorten AP
duration and abolish abnormal depolarization (early after
depolarization (EAD)). Similarly, Matsa and colleagues
successfully derived CMs from related LQTS2 patients
with KCNH2 mutation [13]. Using patch clamp and mi-
croelectrode array mapping, the authors demonstrated
that LQTS2 iPSC-CMs displayed prolonged APs and cor-
rected field potential duration (cFPD). The authors tested
the effect of E-4031 (antiarrhythmic) on patient-specific
iPSC-CMs and found an elongation of AP duration and
induction of EAD. In addition, application (individually or
together) of nicorandil (vasodilator) and PD-118057
(antiarrhythmic) was found to shorten AP duration and
abolish EAD (nicorandil).

Yazawa et al. [11] have also successfully recreated the
LQTS phenotype in iPSC-derived CMs generated from
patients with Timothy syndrome (LQTSS). This disease,
characterized by a mutation in the CACNA1C gene en-
coding the subunit Cavl.2 of the voltage-gated calcium
channel in humans, results in multi-system abnormal-
ities including LQTS [11]. Recently, Liew and colleagues
successfully generated iPSC-CMs from a patient with
arrythmogenic right ventricular cardiomyopathy associ-
ated with plakophylin-2 (PKP2) mutation and are in the
process of modeling the disease in vitro [133].

Another study examining the same disorder used
iPSC-CMs to uncover the role of a different mutation in
the sodium channels [246]. Similar techniques were
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Table 2 Patient-specific iPSC-CMs in cardiac disease modeling
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Disease modeled  Genetic disorder Phenotypical assessment

iPSC-CM abnormality

Patients Control Reference(s)

LQTS-1 KCNQ1 Patch clamp I s decrease 2 2 healthy individuals [10]
Immunohistochemistry Adrenergic response
LQTS-2 KCNH2 Patch clamp ls decrease 1 1 healthy individual [229]
Electron recording APD prolongation
Pharmacology
LQTS-2 KCNH2 Patch clamp APD prolongation 2 CMs from HUES7 cell lines [13]
Microscopy Drug sensitivity increase and genetically unrelated
hESC-derived fibroblasts
LQTS-8 (Timothy  CACNATC Patch clamp lca 2 2 healthy individuals [11]
syndrome)
Leopard syndrome PTPN11 Microscopy Large cells, high degree of 2 hESCs and 1 healthy [12]
(HCM) Immunocytochemistry sarcomeric organization, individual
Western blotting preferential nuclear
Antibody array localization of NFATC4
DCM TNNT2 Patch clamp Altered Ca®* handling Many  Many healthy individuals [257]

Electrode recordings
Microelectrode array
Atomic force microscopy

Decreased contractility,
abnormal sarcomeric
organization, increased

susceptibility to adrenergic
stimulation and
bio-mechanical stress

ADP action potential duration, DCM dilated cardiomyopathy, hESC human embryonic stem cell, iPSC-CM induced pluripotent stem cell-derived cardiomyocyte,
Iy, delayed rectifier potassium current, /s slow outward potassium current, LQTS long QT syndrome

employed to provide a model for catecholaminergic
polymorphic ventricular tachycardia that was useful to
evaluate the therapeutic potential of a ryanodine recep-
tor ligand [254]. On the other hand, Okata and col-
leagues successfully showed that the LQTS3 phenotype
is recapitulated by a SCN5A sodium channel mutation
that was maintained in hiPSCs derived from a Brugada
syndrome patient, yet the Brugada syndrome phenotype
was not displayed until SCN5B expression, increased
due to the embryonic nature of these cells, and was op-
posed by knock-down [246].

One of the technical problems encountered in this
type of cellular assay is the phenotypic heterogeneity of
the derived CMs between atrial, ventricular, and nodal
cells, which express different AP patterns early after de-
polarizations. A recent study [255] proposed the use of a
genetically encoded membrane voltage sensor with pro-
moters that drive its expression in hiPSC-CMs to select
the relevant cell types to use for drug screening.

Modeling inherited cardiomyopathies

Arguably, existing experimental tools are sufficient to
model single ion channel disorders, and consequently
the challenge is to leverage the potential of iPSCs to
model more complicated disease phenotypes. One of the
earliest attempts to do this was for the LEOPARD syn-
drome an autosomal dominant multisystem disorder
resulting from a missense mutation in the PTPNI11 gene
that results in abnormalities of the skin, skeletal muscle,
and cardiovascular system [12]. The most commonly
life-threatening cardiac anomaly associated with LEOPARD

syndrome is hypertrophic cardiomyopathy (HCM). Carvajal-
Vergara and his colleagues showed that compared to con-
trol iPSC lines, iPSC-CMs from a LEOPARD syndrome
patient had a higher mean cell surface area, a greater de-
gree of sarcomeric assembly, and a nuclear localization of
the NFATC4 transcription factor. In addition, phospho-
proteomic assays of these CMs revealed a notable abun-
dance or increased phosphorylation of proteins that could
be involved in the cardiac hypertrophy observed in these
patients. Although they were unable to fully characterize
the observed hypertrophic phenotype because of the het-
erogeneity of the iPSC-derived CM population, they were
able to suggest novel molecular mechanisms that may
underlay the development of the hypertrophic phenotype
in this patient population, supporting the utility of
iPSC-CMs as a disease model. iPSC lines were created
from a family with isolated familial HCM who carried a
missense mutation in the MYH?7 gene. Despite mutations
of genes encoding sarcomeric proteins being the classic
cause of familial HCM, the mechanisms that lead to the
development of the HCM phenotype is unclear. This
study was able to replicate the HCM phenotype at the cel-
lular level, showing cellular, contractile, and electrophysio-
logical enlargement [256]. Unlike the aforementioned
study, the authors were also able to demonstrate activa-
tion of a hypertrophic gene expression pattern; signifi-
cantly, however, this was achieved using single-cell gene
expression analysis, negating the effect of population het-
erogeneity. Not only were the authors able to demonstrate
that deranged calcium hemostasis was critical to the de-
velopment of the HCM phenotype, but pharmacological
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normalization of calcium hemostasis was able to prevent
the development of the HCM phenotype, suggesting novel
therapeutic mechanisms [256]. Similarly, iPSC lines have
been generated from a family with familial dilated cardio-
myopathy (DCM), caused by a mutation of the gene en-
coding cardiac troponin T (TNNT2) [257]. iPSC-derived
CMs differentiated from patients with DCM exhibited a
DCM phenotype with deranged sarcomeric organization,
altered calcium handling and increased susceptibility to
biomechanical stress and adrenergic stimulation [257].
The authors found that B-blockade and Serca2a overex-
pression partially normalized the adverse phenotype ob-
served in DCM iPSC-CMs [257].

A further study, which created iPSC-CMs from DCM
patients, demonstrated a different application from the
previous studies for iPSCs in cardiovascular disease
modeling [258]. In this study recreation of the DCM cel-
lular phenotype using iPSC-CMs from a patient with a
novel mutation of the gene encoding desmin was used
to support the assertion that this mutation was respon-
sible for the development of the DCM phenotype in this
patient [258].

Despite promising evidence that complex cellular phe-
notypes can be modeled using iPSC-CMs, questions re-
main. Several of these studies suggest that there was
heterogeneity in the population of iPSC-CMs, or
inclusion of non-CMs following the use of common
differentiation techniques. This may limit the utility of
iPSC-CMs for multicellular assays, which are the main-
stay of molecular biological and cellular physiology, and
consequently limit their utility as disease models. Some
studies were able to recreate subcellular phenotypes in
iPSC-derived CMs whilst failing to recreate DCM or
HCM cellular phenotypes, suggesting that culture condi-
tions or cell-cell interaction may be critical in develop-
ing disease phenotypes [259, 260]. Overall, it remains to
be shown whether the cellular defects evident can be
modeled in a meaningful fashion using cells with such
an immature and heterogeneous phenotype.

Drug screening and development

Drug development is expensive and high-risk [261, 262],
with the average cost for a drug being estimated to
exceed US $800 million [262]. This can be largely attrib-
uted to the large number (approximately 80%) of chem-
ical compounds which are rejected at some stage during
clinical trials [262]. In half of cases this is due to reduced
efficacy, and in the other half to increased toxicity
(commonly cardiac or hepatic toxicity) [14]. Cardiac tox-
icity can lead to reactive oxygen species formation, altered
contractility, arrhythmia, impaired gene expression, and
cell death. The current models used in the pharmaceutical
industry for cardiac drug toxicity screening rely on animal
CMs, immortalized human cell lines, and animal models.
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Although these models provide useful information in
evaluating the safety and efficacy of the drugs, they fail to
replicate human pathophysiological conditions. The devel-
opment of reliable in vitro models for drug screening and
toxicity is a major challenge in drug development.
iPSC-CMs from patients with a range of genetic back-
grounds and disease phenotypes could potentially provide
a high-throughput platform for toxicology screening and
drug development [153, 263]. A recent study used tran-
scriptome profiling of iPSC-CMs to verify that reprogram-
ming preserved patient-specific patterns of metabolic and
stress-response gene expression [264]. The transcriptome-
based toxicology analysis in this study predicted cardio-
toxicity in a manner that was concordant with functional
assays used for validation. However, many of the caveats
that apply to the use of iPSC-CMs as disease models apply
to their use as toxicology screening and drug development
tools. As iPSC-CMs have an immature and heterogeneous
phenotype, experimental findings will need to be consid-
ered in conjunction with, rather than instead of, existing
animal models.

Cardiac regeneration

Current therapies for heart failure are largely palliative,
aiming to prevent the progression of heart failure and
relieve symptoms [3]. The only treatment for end-stage
heart failure with established long-term efficacy is car-
diac transplantation [4]. The increasing prevalence of
heart failure and existing shortage of donor organs
makes transplantation an unsustainable long-term solu-
tion [5]. Consequently, there is a major need to develop
novel therapeutic strategies.

Myocardial repair

Cell therapy entails either mobilization of endogenous car-
diac progenitor cells or transplantation of exogenous stem
cells. Interestingly, these therapies are not mutually exclu-
sive, and it has been widely suggested that cell transplant-
ation promotes mobilization of endogenous stem cells
[265]. Several cell types have been suggested for use in
cardiac regeneration, including skeletal myoblasts, bone
marrow-derived stem cells, endothelial stem cells, MSCs,
and cardiac stem cells (CSCs) [3, 29, 133, 266—272]
(Table 3). All cell types appear to induce a transient im-
provement in cardiac physiology in humans and animal
models. However, it is now considered unlikely that this
can be explained by induction of myogenesis alone [273].
Improvements in function were often before significant
myogenesis could have occurred, suggesting that func-
tional improvements in the existing cells are responsible
[274]. Improvements in cardiac physiology were seen
irrespective of cell type [275] and delivery method and
without an expected dose effect [276]. Despite promising
early reports, there has been a paucity of evidence
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Table 3 Characteristics of different types of stem cells for cardiac regeneration

BMSCs MSCs MBs CSCs EPCs ESCs iPSCs
Origin Bone Bone marrow, Muscle Heart Bone marrow, ICM of blastocysts Diverse tissues
marrow heart, lung, peripheral blood

adipose tissue

Differentiated cells

CMs Controversial Controversial — Controversial Possible Impossible Possible Possible
Endothelial cells Possible Possible No report Possible Possible Possible Possible
SMCs Possible Possible No report Possible Impossible Possible Possible
Other cell types Unknown Possible No report Controversial Impossible Possible Possible
Immunogenicity Unlikely if Unlikely if Unlikely if Unlikely if Unlikely if Exists Unlikely if autologous
autologous  autologous autologous  autologous  autologous
Electrochemical No Yes No Possible - Possible Possible
coupling
Paracrine effect Exists Exists Exists Exists Exists Exists Exists
In vitro expansion Limited Limited Limited Limited Limited Yes Yes
Clinical safety Yes Yes Side effects ~ VYes Yes Teratoma formation, Teratoma formation,

reported

ethical concerns,
arrhythmia

mutagenesis, arrhythmia

BMSC bone marrow stem cell, MSC mesenchymal stem cell, MB mybolast, CSC cardiac stem cell, EPC endothelial progenitor cell, ESC embryonic stem cell, ICM

inner cell mass, iPSC induced pluripotent stem cell, CM cardiomyocyte

demonstrating the presence of new CMs is significant
enough to account for even these moderate, transient im-
provements in cardiac function [277, 278]. A view based
on some recent observations might offer an explanation
via a role for exosomes containing angiogenic factors re-
leased from these cells in a paracrine manner [279]. In-
deed, several studies have proposed the use and delivery
of exosomes derived from iPSC-CMs to improve cardiac
function in animal models [280].

Most of the clinical experience had been with autolo-
gous CD34+ cell transplantation [281, 282]. These cells
were either obtained by bone marrow aspiration or puri-
fied from peripheral blood following mobilization with
G-CSE. These cells received no treatment or modulation
prior to injection into patients. Collective clinical evi-
dence shows that, following percutaneous coronary
intervention, transplantation of these cells reduced
long-term mortality, development of arrhythmias, and
non-fatal myocardial infarction (MI). However, there
was no improvement observed in ejection fraction or
hospitalization due to heart failure.

ESCs and iPSCs, in contrast to many of the multipo-
tent cell types used in clinical trials and animal models,
are pluripotent and can differentiate into all cell types in
the body, including CMs [78, 153, 230, 283-286]. Fur-
thermore, unlike CSCs, which also have CM differenti-
ation potential, iPSCs and ESCs can be expanded and
cultured for many months without loss of phenotype
[287]. Furthermore iPSCs theoretically facilitate allogen-
eic transplantation [288, 289].

Researchers have reported that transplantation of
ESC-CMs into the infarcted hearts of rodents improve

cardiac function [148, 149, 290-294]. Similarly, iPSCs
have been shown to improve cardiac function in rodent
models of MI [267, 295]. The engrafted iPSCs were able
to restore contractile performance, attenuate patho-
logical vascular remodeling, and enhance electrophysio-
logical properties, while also achieving in situ cardiac
tissue regeneration. Three-dimensional human heart con-
structs consisting of hiPSC-CMs and endothelial cells were
used to repair large cardiac defects. These constructs
markedly improved cardiac function, with increased myo-
cyte proliferation, vascularization, and electrical coupling
to the intact heart [296]. Similar regenerative potential was
also seen when hiPSC-CMs were used to seed biodegrad-
able tissue grafts used to repair ventricular defects in rats,
indicating a potential use in congenital defects [297].

Novel potential applications of iPSC technology involve
their use in combination with the zinc-finger nuclease
(ZEN) technique to genetically modify patient-specific
iPSCs [298]. This technique involves using genetically engi-
neered ZFNs to cleave DNA sequences (containing the
disease-causing mutations), allowing the endogenous DNA
repair machinery to make targeted gene correction or
“genome editing”. The ZEN technique was originally used
for manipulating the genomes of many plants and animals,
but has recently been applied to iPSCs for treating genetic
abnormalities responsible for a-1 antitrypsin deficiency
[299] and sickle cell anemia [300]. Similarly, this approach
could be adapted to correct genetic mutations in
patient-derived iPSC-CMs, so they can be implanted back
into the patients, avoiding the need for immunosuppres-
sion. Additionally, CRISPR/Cas-9 was successfully applied
on iPSC-CMs from patients with arrhythmogenic right
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ventricular cardiomyopathy showing atypical sodium chan-
nel mutations [301]. The corrected myocytes showed nor-
mal channel activity and expression. However, these
techniques are at an early stage and require extensive in-
vestigation to ensure the necessary accuracy, efficiency,
and safety prior to applying them in clinical practice.

Cardiac pacing
iPSCs have also been proposed as “biological pace-
makers” in patients with acquired arrhythmia. The con-
traction of heart muscle is initiated by a syncytium of
specialized cells (pacemaker cells) responsible for the
generation of rhythmic impulses that control heart rate,
which are propagated through the myocardium through
specialized conducting fibers [302]. This mechanism can
fail following ischemic insult or as a result of degenera-
tive heart disease, often requiring insertion of an artifi-
cial cardiac pacemaker to restore cardiac function. The
development of “biological pacemakers” can bypass the
need for implantable pacemakers and its associated risks,
including immune rejection, infection, and generator/
battery replacement. One of the original reports about
the use of hESCs for cardiac pacing found that
hESC-CMs were capable of pacing the hearts of swine
with complete atrioventricular block and restoring the
electromechanical properties of the myocardium [303].
Similar results have been obtained using genetically
engineered hESCs transplanted into guinea pig hearts
[304]. iPSCs are potentially preferential to hESCs for the
same reasons discussed in the previous section relating
to myocardial regeneration; however, in addition to the
tumorigenicity and immunogenicity of iPSCs, numerous
technical problems exist before this potential application
can be translated to the clinic [302]. The immature
pacemaker mechanisms in iPSC-CMs and their hetero-
geneous phenotype, for example, may make them poten-
tially dangerous artificial pacemakers.

iPSC-based cell therapy is not, however, without tech-
nical difficulties and these will need to be overcome
before they can be readily applied in clinical practice.
Firstly, reports suggest that undifferentiated iPSCs may
elicit a significant host immune response [83]. Whilst
this appears to be overcome by differentiating the cells
into the host tissue lineage before injection, this may po-
tentially negate many of the benefits of using a pluripo-
tent stem cell line [305, 306]. Nevertheless, a recent
study reported promising results with a microRNA
switch designed to detect and remove hiPSCs and
partially differentiated cells, thus preventing teratoma
formation, before transplantation [307]. Furthermore,
long-standing concerns about the tumorigenicity of
iPSCs relate to both the activation of oncogenes during
reprogramming and their pluripotent nature [308]. Novel
reprogramming technology that avoids viral-genome
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integration and injection of differentiated cells may over-
come this problem; however, it requires that reprogram-
ming, expansion, differentiation, and CM purification
protocols be optimized before iPSC technology can be
brought into the clinic [308].

Beyond iPSC technology: direct reprogramming of
fibroblasts into functional CMs

Srivastava and colleagues extended the concept of
cellular reprogramming by demonstrating direct trans-
differentiation of murine fibroblasts into functional CMs
by retroviral delivery of three cardiac transcription fac-
tors: Gatad, Mef2c, and Tbx5 (GMT) [231]. One week
after transduction, expression of cardiac troponin T,
sarcomeric a-actinin, and atrial natriuretic peptide was
detected in ~ 30% of the cells. Injected into murine hearts,
these three factor-reprogrammed cells showed rapid dif-
ferentiation into CMs that were epigenetically and func-
tionally similar to wild-type CMs. However, CM-specific
genes like actin-a cardiac muscle-1 (ACTC1), myosine-6
(MYHS6), ryanodine receptor-2 (RYR2), and gap junction
a-1 (GJA1) were not expressed. Recently the same group
demonstrated that resident cardiac fibroblasts in the mur-
ine heart can be reprogrammed into CMs by local delivery
of GMT-loaded retrovirus after coronary ligation [309].
The induced CMs infiltrated into the infarct border zone,
electrically matured, and coupled with the endogenous
CMs. Using genetic lineage tracing, the authors showed
that these induced CMs were descendants of cardiac
fibroblasts. Moreover, the in vivo delivery of GMT de-
creased infarct size and modestly improved cardiac func-
tion up to 3 months after coronary ligation.

A modified protocol has been used to directly repro-
gram mouse embryonic fibroblasts (MEFs) into beating
CMs without an intermediate pluripotent state [91]. Efe
and colleagues showed that a brief overexpression of
OKSM factors (~ 4 days) in conditioned media could ef-
ficiently generate spontaneously contracting patches of
CMs over a period of 11-12 days. Importantly, the ap-
plication of the small-molecule JAK/STAT pathway in-
hibitor JI1 primes the transient pluripotent cells towards
a cardiac fate. This observation strongly supports a role
for JAK/STAT signaling in the regulation of cardiac cell
differentiation [310].

These studies suggest that differentiated somatic cells
can be reprogrammed directly into functional CMs with-
out transitioning first to an intermediate pluripotent
state. Bypassing the pluripotent stage not only poten-
tially makes generation of reprogrammed CMs much
more efficient but significantly reduces the tumorigenic
risk associated with the use of pluripotent stem cells.
Nevertheless, these strategies still rely on viral vectors
for reprogramming, which raises safety concerns and
may limit their application in clinical practice.
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