22 research outputs found

    Interaction between genetic and epigenetic variation defines gene expression patterns at the asthma-associated locus 17q12-q21 in lymphoblastoid cell lines

    Get PDF
    Phenotypic variation results from variation in gene expression, which is modulated by genetic and/or epigenetic factors. To understand the molecular basis of human disease, interaction between genetic and epigenetic factors needs to be taken into account. The asthma-associated region 17q12-q21 harbors three genes, the zona pellucida binding protein 2 (ZPBP2), gasdermin B (GSDMB) and ORM1-like 3 (ORMDL3), that show allele-specific differences in expression levels in lymphoblastoid cell lines (LCLs) and CD4+ T cells. Here, we report a molecular dissection of allele-specific transcriptional regulation of the genes within the chromosomal region 17q12-q21 combining in vitro transfection, formaldehyde-assisted isolation of regulatory elements, chromatin immunoprecipitation and DNA methylation assays in LCLs. We found that a single nucleotide polymorphism rs4795397 influences the activity of ZPBP2 promoter in vitro in an allele-dependent fashion, and also leads to nucleosome repositioning on the asthma-associated allele. However, variable methylation of exon 1 of ZPBP2 masks the strong genetic effect on ZPBP2 promoter activity in LCLs. In contrast, the ORMDL3 promoter is fully unmethylated, which allows detection of genetic effects on its transcription. We conclude that the cis-regulatory effects on 17q12-q21 gene expression result from interaction between several regulatory polymorphisms and epigenetic factors within the cis-regulatory haplotype region

    Novel imprinted transcripts from the Dlk1-Gtl2 intergenic region, Mico1 and Mico1os, show circadian oscillations.

    No full text
    International audienceMost of the known imprinted genes are assembled into clusters that share common imprinting control regions (ICRs). Non-coding transcripts are often associated with ICRs and implicated in imprinting regulation. We undertook a systematic search for transcripts originating from the Dlk1-Gtl2 intergenic region that contains the ICR for the chromosome 12 imprinted cluster and identified two overlapping transcripts expressed from opposite strands exclusively from the maternal chromosome. These novel imprinted transcripts most likely represent non-coding RNAs and are located telomeric to the IG DMR, extending the proximal boundary of the region of maternal-specific transcription. Their expression is tissue-specific and shows diurnal and circadian oscillations.Therefore, we named these novel transcripts maternal intergenic circadian oscillating 1 (Mico1) and Mico1, opposite strand (Mico1os)

    Regulatory interaction between the ZPBP2-ORMDL3/Zpbp2-Ormdl3 region and the circadian clock.

    No full text
    Genome-wide association study (GWAS) loci for several immunity-mediated diseases (early onset asthma, inflammatory bowel disease (IBD), primary biliary cholangitis, and rheumatoid arthritis) map to chromosomal region 17q12-q21. The predominant view is that association between 17q12-q21 alleles and increased risk of developing asthma or IBD is due to regulatory variants. ORM sphingolipid biosynthesis regulator (ORMDL3) residing in this region is the most promising gene candidate for explaining association with disease. However, the relationship between 17q12-q21 alleles and disease is complex suggesting contributions from other factors, such as trans-acting genetic and environmental modifiers or circadian rhythms. Circadian rhythms regulate expression levels of thousands of genes and their dysregulation is implicated in the etiology of several common chronic inflammatory diseases. However, their role in the regulation of the 17q12-q21 genes has not been investigated. Moreover, the core clock gene nuclear receptor subfamily 1, group D, member 1 (NR1D1) resides about 200 kb distal to the GWAS region. We hypothesized that circadian rhythms influenced gene expression levels in 17q12-q21 region and conversely, regulatory elements in this region influenced transcription of the core clock gene NR1D1 in cis. To test these hypotheses, we examined the diurnal expression profiles of zona pellucida binding protein 2 (ZPBP2/Zpbp2), gasdermin B (GSDMB), and ORMDL3/Ormdl3 in human and mouse tissues and analyzed the impact of genetic variation in the ZPBP2/Zpbp2 region on NR1D1/Nr1d1 expression. We found that Ormdl3 and Zpbp2 were controlled by the circadian clock in a tissue-specific fashion. We also report that deletion of the Zpbp2 region altered the expression profile of Nr1d1 in lungs and ileum in a time-dependent manner. In liver, the deletion was associated with enhanced expression of Ormdl3. We provide the first evidence that disease-associated genes Zpbp2 and Ormdl3 are regulated by circadian rhythms and the Zpbp2 region influences expression of the core clock gene Nr1d1

    Parental Effect of DNA (Cytosine-5) Methyltransferase 1 on Grandparental-Origin-Dependent Transmission Ratio Distortion in Mouse Crosses and Human Families

    No full text
    Transmission ratio distortion (TRD) is a deviation from the expected Mendelian 1:1 ratio of alleles transmitted from parents to offspring and may arise by different mechanisms. Earlier we described a grandparental-origin-dependent sex-of-offspring-specific TRD of maternal chromosome 12 alleles closely linked to an imprinted region and hypothesized that it resulted from imprint resetting errors in the maternal germline. Here, we report that the genotype of the parents for loss-of-function mutations in the Dnmt1 gene influences the transmission of grandparental chromosome 12 alleles. More specifically, maternal Dnmt1 mutations restore Mendelian transmission ratios of chromosome 12 alleles. Transmission of maternal alleles depends upon the presence of the Dnmt1 mutation in the mother rather than upon the Dnmt1 genotype of the offspring. Paternal transmission mirrors the maternal one: live-born offspring of wild-type fathers display 1:1 transmission ratios, whereas offspring of heterozygous Dnmt1 mutant fathers tend to inherit grandpaternal alleles. Analysis of allelic transmission in the homologous region of human chromosome 14q32 detected preferential transmission of alleles from the paternal grandfather to grandsons. Thus, parental Dnmt1 is a modifier of transmission of alleles at an unlinked chromosomal region and perhaps has a role in the genesis of TRD

    Role of DNA methylation in expression control of the IKZF3-GSDMA region in human epithelial cells.

    Get PDF
    Chromosomal region 17q12-q21 is associated with asthma and harbors regulatory polymorphisms that influence expression levels of all five protein-coding genes in the region: IKAROS family zinc finger 3 (Aiolos) (IKZF3), zona pellucida binding protein 2 (ZPBP2), ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3), and gasdermins A and B (GSDMA, GSDMB). Furthermore, DNA methylation in this region has been implicated as a potential modifier of the genetic risk of asthma development. To further characterize the effect of DNA methylation, we examined the impact of treatment with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC) that causes DNA demethylation, on expression and promoter methylation of the five 17q12-q21 genes in the human airway epithelium cell line NuLi-1, embryonic kidney epithelium cell line 293T and human adenocarcinoma cell line MCF-7. 5-aza-dC treatment led to upregulation of expression of GSDMA in all three cell lines. ZPBP2 was upregulated in NuLi-1, but remained repressed in 293T and MCF-7 cells, whereas ORMDL3 was upregulated in 293T and MCF-7 cells, but not NuLi-1. Upregulation of ZPBP2 and GSDMA was accompanied by a decrease in promoter methylation. Moreover, 5-aza-dC treatment modified allelic expression of ZPBP2 and ORMDL3 suggesting that different alleles may respond differently to treatment. We also identified a polymorphic CTCF-binding site in intron 1 of ORMDL3 carrying a CG SNP rs4065275 and determined its methylation level. The site's methylation was unaffected by 5-aza-dC treatment in NuLi-1 cells. We conclude that modest changes (8-13%) in promoter methylation levels of ZPBP2 and GSDMA may cause substantial changes in RNA levels and that allelic expression of ZPBP2 and ORMDL3 is mediated by DNA methylation

    X chromosome dosage and presence of SRY shape sex-specific differences in DNA methylation at an autosomal region in human cells

    Get PDF
    Abstract Background Sexual dimorphism in DNA methylation levels is a recurrent epigenetic feature in different human cell types and has been implicated in predisposition to disease, such as psychiatric and autoimmune disorders. To elucidate the genetic origins of sex-specific DNA methylation, we examined DNA methylation levels in fibroblast cell lines and blood cells from individuals with different combinations of sex chromosome complements and sex phenotypes focusing on a single autosomal region––the differentially methylated region (DMR) in the promoter of the zona pellucida binding protein 2 (ZPBP2) as a reporter. Results Our data show that the presence of the sex determining region Y (SRY) was associated with lower methylation levels, whereas higher X chromosome dosage in the absence of SRY led to an increase in DNA methylation levels at the ZPBP2 DMR. We mapped the X-linked modifier of DNA methylation to the long arm of chromosome X (Xq13-q21) and tested the impact of mutations in the ATRX and RLIM genes, located in this region, on methylation levels. Neither ATRX nor RLIM mutations influenced ZPBP2 methylation in female carriers. Conclusions We conclude that sex-specific methylation differences at the autosomal locus result from interaction between a Y-linked factor SRY and at least one X-linked factor that acts in a dose-dependent manner

    5-aza-dC treatment enhances gene expression.

    No full text
    <p>(A) 5-aza-dC treated NuLi-1 cells show reduced proliferation and apoptosis four days after treatment. Arrowheads point to dying/dead cells. (B) Changes in expression levels of 17q12-q21 genes after 5-aza-dC treatment. The y-axis shows fold change in 5-aza-dC treated cells compared to controls. Error bars show standard deviation. Asterisks indicate statistically significant change in expression in 5-aza-dC treated cells compared to controls (* p < 0.05). (C) Allelic expression in 17q12-q21 genes after 5-aza-dC treatment. Arrows show positions of transcribed SNPs in those genes where allelic expression changed post 5-aza-dC treatment. In <i>ZPBP2</i>, 5-aza-dC treatment causes reactivation of the HapA allele. In <i>ORMDL3</i> it causes a switch in allelic preference. (D) Positions of 51 CGs in the <i>ZPBP2</i> promoter region that were assayed using the sodium bisulfite sequencing assay are shown in the context of the UCSC browser. The red box indicates the position of the 11 CGs assayed using the pyrosequencing methylation assay. (E) DNA methylation profiles of the <i>ZPBP2</i> promoter region in control (DMSO) and 5-aza-dC treated cells. Filled circles represent methylated CGs, open circles represent unmethylated CGs. Each row represents a clone. Data are divided by haplotype; allelic percent methylation is shown below the diagram. Type of treatment and average methylation levels are shown on top. Arrow points to CG31 (CG6 in pyrosequencing assays) that has one of the most pronounced allelic differences in methylation.</p

    DNA methylation patterns of the <i>GSDMA</i> promoter in NuLi-1 cells.

    No full text
    <p>(A) Positions of the interrogated CGs with respect to the <i>GSDMA</i> promoter region are shown in the context of the UCSC browser. (B) <i>GSDMA</i> promoter methylation changes after 5-aza-dC treatment. Filled circles represent methylated CGs, open circles represent unmethylated CGs. Each row represents a clone, the number on the right indicates the number of clones with a particular methylation pattern. Data are divided by allele; allelic percent methylation is shown below the diagram. Type of treatment and average DNA methylation are shown on top; hA -haplotype A; hB–haplotype B.</p
    corecore