116 research outputs found

    Mapping localized surface plasmons within silver nanocubes using cathodoluminescence hyperspectral imaging

    Get PDF
    Localized surface plasmons within silver nanocubes less than 50 nm in size are investigated using high resolution cathodoluminescence hyperspectral imaging. Multivariate statistical analysis of the multidimensional luminescence dataset allows both the identification of distinct spectral features in the emission and the mapping of their spatial distribution. These results show a 490 nm peak emitted from the cube faces, with shorter wavelength luminescence coming from the vertices and edges; this provides direct experimental confirmation of theoretical predictions

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Anti-Helicobacter pylori activity and immunostimulatory effect of extracts from Byrsonima crassa Nied. (Malpighiaceae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several <it>in vitro </it>studies have looked at the effect of medicinal plant extracts against <it>Helicobacter pylori </it>(<it>H. pylori</it>). Regardless of the popular use of <it>Byrsonima crassa </it>(<it>B. crassa</it>) as antiemetic, diuretic, febrifuge, to treat diarrhea, gastritis and ulcers, there is no data on its effects against <it>H. pylori</it>. In this study, we evaluated the anti-<it>H. pylori </it>of <it>B. crassa </it>leaves extracts and its effects on reactive oxygen/nitrogen intermediates induction by murine peritoneal macrophages.</p> <p>Methods</p> <p>The minimal inhibitory concentration (MIC) was determined by broth microdilution method and the production of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) and nitric oxide (NO) by the horseradish peroxidase-dependent oxidation of phenol red and Griess reaction, respectively.</p> <p>Results</p> <p>The methanolic (MeOH) and chloroformic (CHCl<sub>3</sub>) extracts inhibit, <it>in vitro</it>, the growth of <it>H. pylori </it>with MIC value of 1024 μg/ml. The MeOH extract induced the production H<sub>2</sub>O<sub>2 </sub>and NO, but CHCl<sub>3 </sub>extract only NO.</p> <p>Conclusion</p> <p>Based in our results, <it>B. crassa </it>can be considered a source of compounds with anti-<it>H. pylori </it>activity, but its use should be done with caution in treatment of the gastritis and peptic ulcers, since the reactive oxygen/nitrogen intermediates are involved in the pathogenesis of gastric mucosal injury induced by ulcerogenic agents and <it>H. pylori </it>infections.</p

    Metaphase I orientation of Robertsonian trivalents in the water-hyacinth grasshopper, Cornops aquaticum (Acrididae, Orthoptera)

    Get PDF
    Trivalents resulting from polymorphic Robertsonian rearrangements must have a regular orientation in metaphase I if the polymorphisms are to be maintained. It has been argued that redistribution of proximal and interstitial chiasmata to more distal positions is necessary for a convergent orientation, the only one that produces viable gametes. Cornops aquaticum is a South-American grasshopper that lives and feeds on water-hyacinths, and has three polymorphic Robertsonian rearrangements in its southernmost distribution area in Central Argentina and Uruguay. The orientation of trivalents in metaphase I, the formation of abnormal spermatids and the frequency and position of chiasmata in the trivalents, was analysed in a polymorphic population of C. aquaticus. In this study we observed a correlation between the number of trivalents with the frequency of abnormal spermatids; additionally, the number of chiasmata, especially proximal and interstitial ones, was strongly correlated with the frequency of the linear orientation. Therefore we confirmed our previous assumption, based on other evidence, that the chiasmata redistribution in fusion carriers is essential to the maintenance of the polymorphisms

    Inhibition of Autonomic Storm by Epidural Anesthesia Does Not Influence Cardiac Inflammatory Response After Brain Death in Rats

    Get PDF
    Background. After brain death (BD) donors usually experience cardiac dysfunction, which is responsible for a considerable number of unused organs. Causes of this cardiac dysfunction are not fully understood. Some authors argue that autonomic storm with severe hemodynamic instability leads to inflammatory activation and myocardial dysfunction. Objectives. To investigate the hypothesis that thoracic epidural anesthesia blocks autonomic storm and improves graft condition by reducing the inflammatory response. Methods. Twenty-eight male Wistar rats (250-350 g) allocated to four groups received saline or bupivacaine via an epidural catheter at various times in relation to brain-death induction. Brain death was induced by a sudden increase in intracranial pressure by rapid inflation of a ballon catheter in the extradural space. Blood gases, electrolytes, and lactate analyses were performed at time zero, and 3 and 6 hours. Blood leukocytes were counted at 0 and 6 hours. After 6 hours of BD, we performed euthanasia to measure vascular adhesion molecule (VCAM)-1, intracellular adhesion molecule (ICAM)-1, interleukin (IL)-1 beta, tumor necrosis factor (TNF)-alpha, Bcl-2 and caspase-3 on cardiac tissue. Results. Thoracic epidural anesthesia was effective to block the autonomic storm with a significant difference in mean arterial pressure between the untreated (saline) and the bupivacaine group before BD (P &lt; .05). However, no significant difference was observed for the expressions of VCAM-1, ICAM-1, TNF-alpha, IL-1 beta, Bcl-2, and caspase-3 (P &gt; .05). Conclusion. Autonomic storm did not seem to be responsible for the inflammatory changes associated with BD; thoracic epidural anesthesia did not modify the expression of inflammatory mediators although it effectively blocked the autonomic storm

    Increased Recruitment but Impaired Function of Leukocytes during Inflammation in Mouse Models of Type 1 and Type 2 Diabetes

    Get PDF
    BACKGROUND: Patients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation. METHODOLOGY/PRINCIPAL FINDINGS: Diabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice. CONCLUSIONS/SIGNIFICANCE: These results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance

    Galloylquinic acid derivatives from Byrsonima fagifolia leaf extract and potential antifungal activity.

    Get PDF
    Ethnopharmacological relevance: Byrsonima fagifolia Niedenzu (Malpighiaceae) and other Byrsonima species are popularly employed in Brazilian traditional medicine in the form of preparations as cicatrizing, antiinflammatory, and antimicrobial. Aim of the study: To characterize the phytochemical profile of the hydromethanolic extract obtained from B. fagifolia leaves (BF extract) and to evaluate the toxicity and the antifungal activity. based on extensive analyses of 1D and 2D NMR spectra (HMQC, HMBC and COSY) data. The antifungal effect was determined by the broth microdilution method and the toxicity was evaluated on erythrocytes from sheep?s blood and Galleria mellonella larvae. Results: Phytochemical investigation of the BF extract led to the isolation and characterization of pyrogallol, nbutyl gallate, 3,4-di-O-galloylquinic acid, 3,5-di-O-galloylquinic acid, 3,4,5-tri-O-galloylquinic acid, and 1,3,4,5-tetra-O-galloylquinic acid. The BF extract showed high content of galloylquinic acid derivatives reaching more than twenty-times the quercetin derivatives content, according to the quantification by HPLC. These galloylquinic acid derivatives, obtained during this study, and quercetin derivatives, previously isolated, were submitted to the antifungal assays. The BF extract inhibited yeast growth mainly against Cryptococcus spp., at concentrations of 1?16 ?g/mL, comparable to isolated compounds galloylquinic acid derivatives. However, the quercetin derivatives as well as quinic acid, gallic acid, and methyl gallate showed lower antifungal effect compared with galloylquinic derivatives. In addition, the BF extract had no hemolytic effect and no toxicity on G. mellonella

    Metal nanoparticles for microscopy and spectroscopy

    Get PDF
    Metal nanoparticles interact strongly with light due to a resonant response of their free electrons. These ‘plasmon’ resonances appear as very strong extinction and scattering for particular wavelengths, and result in high enhancements of the local field compared to the incident electric field. In this chapter we introduce the reader to the optical properties of single plasmon particles as well as finite clusters and periodic lattices, and discuss several applications

    Noise Properties of Rectifying Nanopores

    Get PDF
    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation
    corecore