633 research outputs found

    Recent results of a seismically isolated optical table prototype designed for advanced LIGO

    Get PDF
    The Horizontal Access Module Seismic Attenuation System (HAM-SAS) is a mechanical device expressly designed to isolate a multipurpose optical table and fit in the tight space of the LIGO HAM Ultra-High-Vacuum chamber. Seismic attenuation in the detectors' sensitivity frequency band is achieved with state of the art passive mechanical attenuators. These devices should provide an attenuation factor of about 70dB above 10Hz at the suspension point of the Advanced LIGO triple pendulum suspension. Automatic control techniques are used to position the optical table and damp rigid body modes. Here, we report the main results obtained from the full scale prototype installed at the MIT LIGO Advanced System Test Interferometer (LASTI) facility. Seismic attenuation performance, control strategies, improvements and limitations are also discussed

    New Seismic Attenuation System (SAS) for the Advanced LIGO Configurations (LIGO2)

    Get PDF
    A new passive seismic attenuation system is being developed to replace the current passive attenuation stacks in LIGO 2, it is expected to drive the seismic contribution to the interferometer noise below any other noise source. The SAS will be effective completely starting at about 5 Hz, well inside the (uncompensated) gravity gradient noise wall

    The pulsar synchrotron: coherent radio emission

    Full text link
    We propose a simple physical picture for the generation of coherent radio emission in the axisymmetric pulsar magnetosphere that is quite different from the canonical paradigm of radio emission coming from the magnetic polar caps. In this first paper we consider only the axisymmetric case of an aligned rotator. Our picture capitalizes on an important element of the MHD representation of the magnetosphere, namely the separatrix between the corotating closed-line region (the `dead zone') and the open field lines that originate in the polar caps. Along the separatrix flows the return current that corresponds to the main magnetospheric electric current emanating from the polar caps. Across the separatrix, both the toroidal and poloidal components of the magnetic field change discontinuously. The poloidal component discontinuity requires the presence of a significant annular electric current which has up to now been unaccounted for. We estimate the position and thickness of this annular current at the tip of the closed line region, and show that it consists of electrons (positrons) corotating with Lorentz factors on the order of 10^5, emitting incoherent synchrotron radiation that peaks in the hard X-rays. These particles stay in the region of highest annular current close to the equator for a path-length of the order of one meter. We propose that, at wavelengths comparable to that path-length, the particles emit coherent radiation, with radiated power proportional to N^2, where N is the population of particles in the above path-length. We calculate the total radio power in this wavelength regime and its scaling with pulsar period and stellar magnetic field and show that it is consistent with estimates of radio luminosity based on observations.Comment: Monthly Notices Letters, in pres

    Simulation of Coherent Synchrotron Radiation Emission from Rotating Relativistic Electron Layers

    Full text link
    The electromagnetic radiation of a rotating relativistic electron layers is studied numerically using particle-in-cell simulation. The results of the simulation confirm all relevant scaling properties predicted by theoretical models. These models may turn out to be important for the understanding of the coherent synchrotron radiation (CSR) instability that may occur in systems as diverse as particle accelerators radio pulsars.Comment: 4 pages, 5 figures, one new figure, corrected minor errors, accepted for publication in Physical Review

    Alignment procedure for the VIRGO Interferometer: experimental results from the Frascati prototype

    Get PDF
    A small fixed-mirror Michelson interferometer has been built in Frascati to experimentally study the alignment method that has been suggested for VIRGO. The experimental results fully confirm the adequacy of the method. The minimum angular misalignment that can be detected in the present set-up is 10 nrad/sqrt{Hz}Comment: 10 pages, LaTex2e, 4 figures, 5 tables. Submitted to Phys. Lett.

    Electron Sources for Future Lightsources, Summary and Conclusions for the Activities during FLS 2012

    Full text link
    This paper summarizes the discussions, presentations, and activity of the Future Light Sources Workshop 2012 (FLS 2012) working group dedicated to Electron Sources. The focus of the working group was to discuss concepts and technologies that might enable much higher peak and average brightness from electron beam sources. Furthermore the working group was asked to consider methods to greatly improve the robustness of operation and lower the costs of providing electrons.Comment: 11 pages, 7 figures, summary paper from working group Future Light Sources 2012 Workshop at Newport News, Virginia, USA (http://www.jlab.org/conferences/FLS2012/
    • …
    corecore