426 research outputs found

    Freeze/Thaw-Induced Embolism: Probability of Critical Bubble Formation Depends on Speed of Ice Formation

    No full text
    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.We are grateful for support from the Andrew W. Mellon Foundation and the Materials Research Science and Engineering Center at Harvard University. We also thank the Australian Research Council for support (DP110105380)

    Scalable Video Streaming with Prioritised Network Coding on End-System Overlays

    Get PDF
    PhDDistribution over the internet is destined to become a standard approach for live broadcasting of TV or events of nation-wide interest. The demand for high-quality live video with personal requirements is destined to grow exponentially over the next few years. Endsystem multicast is a desirable option for relieving the content server from bandwidth bottlenecks and computational load by allowing decentralised allocation of resources to the users and distributed service management. Network coding provides innovative solutions for a multitude of issues related to multi-user content distribution, such as the coupon-collection problem, allocation and scheduling procedure. This thesis tackles the problem of streaming scalable video on end-system multicast overlays with prioritised push-based streaming. We analyse the characteristic arising from a random coding process as a linear channel operator, and present a novel error detection and correction system for error-resilient decoding, providing one of the first practical frameworks for Joint Source-Channel-Network coding. Our system outperforms both network error correction and traditional FEC coding when performed separately. We then present a content distribution system based on endsystem multicast. Our data exchange protocol makes use of network coding as a way to collaboratively deliver data to several peers. Prioritised streaming is performed by means of hierarchical network coding and a dynamic chunk selection for optimised rate allocation based on goodput statistics at application layer. We prove, by simulated experiments, the efficient allocation of resources for adaptive video delivery. Finally we describe the implementation of our coding system. We highlighting the use rateless coding properties, discuss the application in collaborative and distributed coding systems, and provide an optimised implementation of the decoding algorithm with advanced CPU instructions. We analyse computational load and packet loss protection via lab tests and simulations, complementing the overall analysis of the video streaming system in all its components

    Binaural Spatialization for 3D immersive audio communication in a virtual world

    Get PDF
    Realistic 3D audio can greatly enhance the sense of presence in a virtual environment. We introduce a framework for capturing, transmitting and rendering of 3D audio in presence of other bandwidth savvy streams in a 3D Tele-immersion based virtual environment. This framework presents an efficient implementation for 3D Binaural Spatialization based on the positions of current objects in the scene, including animated avatars and on the fly reconstructed humans. We present a general overview of the framework, how audio is integrated in the system and how it can exploit the positions of the objects and room geometry to render realistic reverberations using head related transfer functions. The network streaming modules used to achieve lip-synchronization, high-quality audio frame reception, and accurate localization for binaural rendering are also presented. We highlight how large computational and networking challenges can be addressed efficiently. This represents a first step in adequate networking support for Binaural 3D Audio, useful for telepresence. The subsystem is successfully integrated with a larger 3D immersive system, with state of art capturing and rendering modules for visual data

    Polaris4os: a best practice for training and adoption of f/oss in sme

    Get PDF
    The methodical adoption of F/OSS in SMEs raises critical problems related to issues such as technology, organization, culture and business model choices. In this paper, we describe Polaris4OS, a successful experience of F/OSS adoption among CEOs, managers and developers of ICT companies. The lack of F/OSS culture has been identified as the most critical obstacle for the exploitation of the new opportunities offered by the F/OSS communities.89-9

    1,2,3-triazolo[4,5-f]quinolines: II: preparation and antimicrobial evaluation of 6-ethyl-6,9-dihydro-1(2)(3)-R-1(2) (3)H-triazolo [4,5-f]quinolin-9-one-8-carboxylic acids as anti-infectives of the urinary tract

    Get PDF
    Some 6-ethyl-1(2)(3)-R-1(2)(3)H-triazolo[4,5-f]quinolin-9-one-8-carboxylic acids were prepared as novel analogues of oxolinic acid in order to evaluate the effect on antibacterial activity of the isosteric replacement of the dioxolic moiety with the triazole ring substituted in position 1 or 2. In vitro tests showed a good and selective activity against Escherichia coli (MIC 12.5 micrograms/ml) of compound (XVI)

    Strain-tuning of nematicity and superconductivity in single crystals of FeSe

    Full text link
    Strain is a powerful experimental tool to explore new electronic states and understand unconventional superconductivity. Here, we investigate the effect of uniaxial strain on the nematic and superconducting phase of single crystal FeSe using magnetotransport measurements. We find that the resistivity response to the strain is strongly temperature dependent and it correlates with the sign change in the Hall coefficient being driven by scattering, coupling with the lattice and multiband phenomena. Band structure calculations suggest that under strain the electron pockets develop a large in-plane anisotropy as compared with the hole pocket. Magnetotransport studies at low temperatures indicate that the mobility of the dominant carriers increases with tensile strain. Close to the critical temperature, all resistivity curves at constant strain cross in a single point, indicating a universal critical exponent linked to a strain-induced phase transition. Our results indicate that the superconducting state is enhanced under compressive strain and suppressed under tensile strain, in agreement with the trends observed in FeSe thin films and overdoped pnictides, whereas the nematic phase seems to be affected in the opposite way by the uniaxial strain. By comparing the enhanced superconductivity under strain of different systems, our results suggest that strain on its own cannot account for the enhanced high TcT_c superconductivity of FeSe systems.Comment: 11 pages, 8 figure

    Inhibitory effect of 2,3,5,6-tetrafluoro-4-[4-(Aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamide derivatives on HIV reverse transcriptase associated rnase H activities

    Get PDF
    The HIV-1 ribonuclease H (RNase H) function of the reverse transcriptase (RT) enzyme catalyzes the selective hydrolysis of the RNA strand of the RNA:DNA heteroduplex replication intermediate, and represents a suitable target for drug development. A particularly attractive approach is constituted by the interference with the RNase H metal-dependent catalytic activity, which resides in the active site located at the C-terminus p66 subunit of RT. Herein, we report results of an in-house screening campaign that allowed us to identify 4-[4-(aryl)-1H-1,2,3-triazol-1-yl]benzenesulfonamides, prepared by the “click chemistry” approach, as novel potential HIV-1 RNase H inhibitors. Three compounds (9d, 10c, and 10d) demonstrated a selective inhibitory activity against the HIV-1 RNase H enzyme at micromolar concentrations. Drug-likeness, predicted by the calculation of a panel of physicochemical and ADME properties, putative binding modes for the active compounds, assessed by computational molecular docking, as well as a mechanistic hypothesis for this novel chemotype are reported

    A complex species complex: The controversial role of ecology and biogeography in the evolutionary history of Syllis gracilis Grube, 1840 (Annelida, Syllidae)

    Get PDF
    The cryptic diversity in the polychaete Syllis gracilis Grube, 1840, in the Mediterranean Sea was examined with an integrative morpho-molecular approach. Individuals of S. gracilis were collected at eleven Mediterranean localities to provide an insight into the role of brackish environments in inducing cryptic speciation. The examination of morphological features combined with a molecular genetic analysis based on a partial sequence of the 16S rRNA gene highlighted discrepancies between morphological and molecular diversity. Morphological data allowed to identify a morphotype with short appendages occurring in coralline algae communities and another one with long appendages observed in brackish-water environments and Sabellaria reefs. Multivariate analyses showed that sampling localities were the greatest source of morphological divergence, suggesting that phenotypic plasticity may play a role in local adaptations of S. gracilis populations. Molecular data showed the occurrence of four divergent lineages not corresponding to morphological clusters. Different species delimitation tests gave conflicting results, retrieving, however, at least four separated entities. Some lineages occurred in sympatry and were equally distributed in marine and brackish-water environments, excluding a biogeographic or ecological explanation of the observed pattern and suggesting instead ancient separation between lineages and secondary contact. The co-occurrence of different lineages hindered the identification of the lineage corresponding to S. gracilis sensu stricto. The discrepancy between morphological and molecular diversity suggests that different environmental and biogeographic features may interact in a complex and unpredictable way in shaping diversity patterns. An integrative approach is needed to provide a satisfactory insight on evolutionary processes in marine invertebrates

    Genotype of Melatonin Receptor MT1 (MTNR1A) and Puberty in Mediterranean Italian Buffalo

    Get PDF
    In adult buffaloes, polymorphism of the MT1 receptor gene has shown to influence the reproductive seasonality. The aim of study was to assess whether the polymorphism of the MTNR1A gene may influence puberty in Mediterranean Italian buffalo. The study was conducted using 50 prepubertal buffalo cows that at the age of 15 months were placed into the group where there was the male. Estrus detection was performed by observing estrous-behaviour and pregnancy checking by palpation per rectum and/or ultrasound between days 40 and 60 post-mating. Also of each animal dates of calving was recorded. From each buffalos a blood sample was collected and used for DNA extraction. PCR analysis was performed using 100-150 ng of DNA to amplify the second exon of the MTNRA1 gene. All PCR products were digested with 2U of enzyme HpaI to highlight the polymorphism at position 82 (characterized by a C to a T substitution) of the MTNR1A gene. Frequency of C and T alleles was respectively 0.42 and 0.58 in the analyzed population which resulted in Hardy Weinberg equilibrium. The genotypic frequency was 28% for genotype C/C, 38% for C/T and 34% for T/T. The registration of reproductive data showed that the first heat is around the age of 20 months and the first calving around 32 months. Our data show that the genotype of the MTNR1A does not influence the onset of reproductive activity in prepubertal buffalo cows
    corecore