51 research outputs found

    Micromechanical models for textile structural composites

    Get PDF
    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites

    Effects of through-the-thickness stitching on impact and interlaminar fracture properties of textile graphite/epoxy laminates

    Get PDF
    This study investigated the effects of through-the-thickness stitching on impact damage resistance, impact damage tolerance, and mode I and mode II fracture toughness of textile graphite/epoxy laminates. Uniweave resin-transfer-molded 48 ply graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar and glass yarns of different linear densities and stitch spacings. Delaminations were implanted during processing to simulate impact damage. Sublaminate buckling tests were performed to determine the effects of stitching on the compressive strength. The results showed outstanding improvements of up to 400 percent in the compression strength over the unstitched laminates. In impact and static indentation tests the onset of damage occurred at the same level, but the extent of damage was less in stitched laminates. Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6) stitched laminates was measured by conducting double-cantilever-beam tests. The critical strain energy release rate (G(sub Ic)) was found to be up to 30 times higher than the unstitched laminates. Mode II fracture toughness of the Uniweave laminates was measured by performing end-notched-flexure tests. Two new methods to compute the apparent G(sub IIc) are presented. The apparent G(sub IIc) was found to be at least 5-15 times higher for the stitched laminates

    Indentation-flexure and low-velocity impact damage in graphite/epoxy laminates

    Get PDF
    Static indentation and low velocity impact tests were performed on quasi-isotropic and cross ply graphite/epoxy composite laminates. The load deflection relations in static tests and impact force history in the impact tests were recorded. The damage was assessed by using ultrasonic C-scanning and photomicrographic techniques. The static behavior of the laminates and damage progression during loading, unloading, and reloading were explained by a simple plate delamination model. A good correlation existed between the static and impact responses. It was found that results from a few static indentation-flexture tests can be used to predict the response and damage in composite laminates due to a class of low velocity impact events

    Damage Tolerance of Sandwich Plates with Debonded Face Sheets

    Get PDF
    Axial compression tests were performed on debonded sandwich composites made of graphite/epoxy face-sheets and aramid fiber honeycomb core. The sandwich beams were manufactured using a vacuum baccrin2 process. The face-sheet and the sandwich beam were co-cured. Delamination between one of the face sheets and the core was introduced by using a Teflon layer during the curing process. Axial compression tests were performed to determine the ultimate load carrying capacity of the debonded beams. Flatwise tension tests and Double Cantilever Beam tests were performed to determine. respectively, the strength and fracture toughness of the face-sheet/core interface. From the test results semi-empirical formulas were derived for the fracture toughness and ultimate compressive load carrying capacity in terms of the core density. core thickness. face-sheet thickness and debond length. Four different failure modes and their relation to the structural properties were identified. Linear buckling analysis was found to be inadequate in predicting the compressive load carrying capacity of the debonded sandwich composites

    Paper Session II-A - Mixed-Mode Interfacial Fracture Toughness of Sandwich Composites at Cryogenic Temperatures

    Get PDF
    Honeycomb sandwich composites are found in a wide range of structural applications due to their high strength and stiffness-to-weight ratio compared to other systems. Current use of sandwich composites ranges from secondary structures in commercial aircrafts to primary structures in military aircraft, helicopters, and reusable launch vehicles, e.g. Space Shuttle. One of the applications of sandwich construction is in the liquid hydrogen tank of future RL V\u27s. Because of their low density and high stiffness sandwich construction is attractive for LH2 tank. However, past tests shave shown that leakage of hydrogen through the composite face sheet and subsequent de bonding of the face-sheet is a major concern in using sandwich construction. This problem can be eliminated by thorough understanding of the fracture mechanics of face sheets under cryogenic conditions. This study aimed to understand the failure phenomena of sandwich composites constructed from carbon fiber/epoxy composite face sheets and Nomex honeycomb cores. Both experiments including testing ·under cryogenic conditions and finite element analyses are performed to understand the conditions under which debonding occurs and propagates. One of the major objectives of the study is to measure the critical energy release rate or fracture toughness of the face-sheet/core interface, which will be a strong function of mode-mixity and temperature. Furthermore, mode-mixity itself will depend up on the geometric factors such as crack length, face sheet and core thickness, and material stiffness parameters. Fracture tests similar to double cantilever beams will be performed on sandwich panels containing initial delaminations. The fracture toughness will be measured for various crack lengths. The loads at which crack propagation occurs will be applied in the finite element model of the panel to obtain the detailed stress field in the vicinity of the crack tip. From the results of the fracture tests and finite element analysis the interfacial fracture toughness of the sandwich panel under cryogenic conditions can be measured. Application of the results to the design of a LH2 tank will be demonstrated

    Quantifying Effects of Voids in Woven Ceramic Matrix Composites

    Get PDF
    Randomness in woven ceramic matrix composite architecture has been found to cause large variability in stiffness and strength. The inherent voids are an aspect of the architecture that may cause a significant portion of the variability. A study is undertaken to investigate the effects of many voids of random sizes and distributions. Response surface approximations were formulated based on void parameters such as area and length fractions to provide an estimate of the effective stiffness. Obtaining quantitative relationships between the properties of the voids and their effects on stiffness of ceramic matrix composites are of ultimate interest, but the exploratory study presented here starts by first modeling the effects of voids on an isotropic material. Several cases with varying void parameters were modeled which resulted in a large amount of variability of the transverse stiffness and out-of-plane shear stiffness. An investigation into a physical explanation for the stiffness degradation led to the observation that the voids need to be treated as an entity that reduces load bearing capabilities in a space larger than what the void directly occupies through a corrected length fraction or area fraction. This provides explanation as to why void volume fraction is not the only important factor to consider when computing loss of stiffness

    Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite

    Get PDF
    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties

    Damage Tolerance of Sandwich Plates With Debonded Face Sheets

    No full text
    A nonlinear finite element analysis was performed to simulate axial compression of sandwich beams with debonded face sheets. The load - end-shortening diagrams were generated for a variety of specimens used in a previous experimental study. The energy release rate at the crack tip was computed using the J-integral, and plotted as a function of the load. A detailed stress analysis was performed and the critical stresses in the face sheet and the core were computed. The core was also modeled as an isotropic elastic-perfectly plastic material and a nonlinear post buckling analysis was performed. A Graeco-Latin factorial plan was used to study the effects of debond length, face sheet and core thicknesses, and core density on the load carrying capacity of the sandwich composite. It has been found that a linear buckling analysis is inadequate in determining the maximum load a debonded sandwich beam can carry. A nonlinear post-buckling analysis combined with an elastoplastic model of the core is required to predict the compression behavior of debonded sandwich beams
    • …
    corecore