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SUMMARY

This study investigated the effects of through-the-thickness stitching on impact

damage resistance, impact damage tolerance, Mode I and Mode II fracture toughness of

textile graphite/epoxy laminates. Uniweave resin-transfer-molded (RTM) 48 ply

graphite/epoxy (AS4/3501-6) laminates were stitched with Kevlar ® and Glass yarns of

different linear and stitch densities. Delaminations were implanted during processing to

simulate impact damage. Sublaminate Buckling Tests were performed to measure

compression strength and to understand the effect of stitching on the failure mode of the

sublaminates. The results showed outstanding improvements of up to 400% in the

compression strength over the unstitched laminates. The stitches change the failure mode

of laminates radically as compared to the unstitched laminates. In addition, the effect on

the impact damage resistance and tolerance of 16 ply plain weave stitched laminates

(Hercules AI93-P/3501-6) was studied by conducting Static Indentation-Flexure (SIF) test

followed by a CAI test. Though the onset of damage occurred at the same load levels as

the unstitched laminates, the damage area was less and the CAI strength was significantly
more even for these thin stitched laminates.

Mode I fracture toughness of 24 ply Uniweave unidirectional (AS4/3501-6)

stitched laminates was measured by conducting Double-Cantilever-Beam (DCB) tests. The

crack propagation in the stitched laminates was observed to be intermittent and dynamic.

The critical strain energy release rate (G_c) was found to be about 30 times higher than

the unstitched laminates for even a low stitch density like 16 stitches/in 2. The Gj_ values

for higher stitch density are expected to be much higher. The G_c was not measured as the

specimens failed in bending before the crack could start propagating during the DCB test.

Mode II fracture toughness of the Uniweave laminates was measured by

performing End-Notched-Flexure (ENF) test in stroke control mode. The crack

propagation in the stitched laminates is gradual and steady unlike the unstitched laminates

where it is sudden and dynamic. In order to calculate the critical strain energy release rate

(GHc), the existing beam theory formula can not be applied as the stitches change the

crack propagation mechanism altogether. The material together with the stitches seems

to behave more like a structure. Therefore, two new methods to compute the apparent G_jc

are presented. First one is Area Method using C-Scan and the other one is Equivalent

Area Method using the Compliance of the Unloading Curve. The apparent GHc was found

to be at least 5-15 times higher for the stitched laminates. The stitches plough through the

matrix and do not break as the crack propagates. Thus, the apparent GHc increases with

the increase in crack length as more and more stitches become involved in the matrix

ploughing.

J_x





CHAPTER- I

INTRODUCTION

Literature Review

Although man-made composites have existed for many thousands of years, the

advanced fibrous composites have evolved in the aerospace industry during the last three

decades. These composite materials are well known for their high strength-to-weight and

stiffness-to-weight ratios. They offer flexibility in tailoring the composite structure to

meet performance requirements in an optimum way. Other advantages of composite

materials include superior corrosion resistance, high energy absorption, favorable thermal

insulation and electrical resistivity [1,2]. The materials have the potential for

revolutionizing the way present day products are made. Today, these materials are finding

increasing applications in automotive, sports, marine, transportation, building construction

and biomedical industry [3]. However, despite the diverse potential of their applications

the production volume of advanced composites has not risen significantly in recent past

[4]. Primary problem areas of unidirectional fiber composites are: high processing cost,

low impact damage resistance and impact damage tolerance, and poor interlaminar

fracture toughness. To alleviate some of the high processing costs, Textile Structural

Composites are fast emerging as low cost - high performance alternative due to adaptation

of many cost effective mass production techniques well known to the textile industry [5].



This research study focusses on the effects of through-the-thickness stitching on

the low velocity impact damage resistance and damage tolerance, and the interlaminar

fracture toughness of textile graphite/epoxy laminates.

Impact Damage Resistance and Impact Damage Tolerance

Impact damage resistance deals with the damage state brought about by an impact

event. Impact damage tolerance concerns the changes in structural performance due to the

damage state. Impact of any foreign object on a composite structure may cause matrix

cracking and delaminations. Damage due to low velocity impact may not be always

visible. Damage, once initiated will propagate during the service life of a structure due

to a variety of loading factors. The effect of low velocity impact on advanced composites

have been widely reported by researchers in the past several years, experimentally and

analytically.

Kwon and Sankar [6] studied applicability of static indentation response in

predicting damage due to large impact mass at low velocity. Jackson and Poe [7] showed

use of impact force as a scale parameter for delamination damage for impacts of simple

plates. They assessed other impact parameters, namely, impact energy and delamination

damage. Low velocity impact damage testing is ususally carried out using a pendulum,

drop tower or gas-gun. Quasi-isotropic graphite/epoxy laminates have virtually become

the bench mark for testing and comparison of analytical and experimental data. Prasad et

al. [8] developed an experimentally validated analysis to determine transient response of

simply supported, rectangular composite plates subjected to low velocity impact. Recently,



a synthesis and treatise of the vast research carried out in the area of low velocity impact

response of composites has been published by Sankar [9]. Whereas the impact force and

impact damage area characterize the impact damage resistance of a laminate, the impact

damage tolerance is invariably characterized by residual compression-after-impact (CAI)

strength [I0-13]. These references are representative of only a cross-section of literature

on a wide variety of impact related issues. Results of all studies indicate that significant

drop in compression strength can result from a low velocity impact even if the damage

is not visible to the eye. Impact causes interply delaminations. The delaminations make

the laminate behave like thinner sublaminates which buckle at lower compressive loads.

However, the effect of through-the-thickness stitching on limiting impact damage and

sublaminate buckling, and increasing the CAI strength of the laminate needs further

understanding.

Interlaminar Fracture Toughness

Although conventional laminated composites have high strength in the fiber

direction, they lack through-the-thickness reinforcement. Hence, they have poor

interlaminar fracture toughness and are susceptible to delaminations. One of the ways to

reinforce a laminate through the thickness is by stitching. The idea of stitching the textile

preform fits well with textile technology. Mignery et al. [14] investigated the use of

stitching by Kevlar ® yarn to suppress delamination in graphite/epoxy laminates. The

results showed that stitches effectively arrested delamination. Dexter and Funk [15]

investigated characterization of impact resistance and interlaminar fracture toughness of



quasi-isotropic graphite-epoxy laminates made of unidirectional Thornel 300-6K

fibers/Hercules 3501-6 resin and stitched with polyester or Kevlar * yarns. They

experimented with stitch parameters and found a significant drop in damage areas of

stitched laminates compared to unstitched laminates for the same impact energy. The

Mode I fracture toughness, characterized by the critical strain energy release rate, G_c ,

was found to be about 30 times higher for the stitched laminates. Effect on Mode II

fracture toughness was not investigated in this study. Ogo [16] investigated the effect of

through-the-thickness stitching of plain woven graphite/epoxy laminates with Kevlar ®

yarn. The study showed a manifold increase in G_c values at the expense of slight drops

of in-plane properties. However, his results did not show any significant increase (8%)

in Mode II fracture toughness as characterized by the critical strain energy release rate,

GHc. Pelstring and Madan [17] developed semiempirical formulae relating damage

tolerance of a composite laminate to stitching parameters. Mode I critical strain energy

release rate was found to be 15 times greater than in unstitched laminates, and the critical

strain energy release rates decreased exponentially with increase in stitch spacing.

Correlation existed between strain energy release rate, damage area, and CAI strength.

Byun et al. [ 18] conducted a finite element analysis on 3-D woven double cantilever beam

(DCB) specimen and evaluated Mode I critical strain energy release rate to investigate the

influence of through-the-thickness fibers on crack driving force and crack length. Chen

et al. [19] proposed effective critical strain energy release rate to measure Mode I fracture

toughness of stitched laminates using a finite element model. Recently, Jain and Mai [20]

have analytically modeled the Mode I delamination toughness of stitched laminated



composites.

It is evident from the above studies that through-the-thickness stitching

significantly improves Mode I fracture toughness in laminates made of unidirectional

tapes or plain woven fabric cloth of graphite and epoxy resin. However, effect on Mode

II fracture toughness has not been fully investigated. Further, variations of stitch density,

stitch failure mechanisms and their contribution to Mode I and Mode II fracture toughness

are not completely understood.

Objectives and Scope

To investigate the effects of stitching on sublaminate buckling failure, CAI

strength, and interlaminar fracture toughness, the tests given below were conducted on

stitched and unstitched specimens made of AS4 uniweave graphite fabric and 3501-6

epoxy resin. Stitch yarns of 1600 denier Kevlar ® (2790 yd/lb) and 3570 and 5952 denier

Glass (1250 and 750 yd/lb respectively) with different stitch densities were investigated.

A denier is a measure of linear density in grams per 9000 meters of yarn. This can also

be represented by yam number which is given by yards/lb for the yarn. Further, we define

stitch density in a composite laminate by the number of stitches per square inch and

represent this density by the stitching pattern as: (Number of stitches per inch) x (Spacing

between two stitch lines), e.g., 8xl/8" means a stitch density of 64 where pitch is 8

stitches per inch and distance between two adjoining stitch rows is 1/8". The specimens

were cut from plates that were processed using Resin-Transfer-Molding (RTM) at Douglas

Aircraft Co., and provided to us by NASA Langley Research Center, Hampton VA. The



RTM process can be used for high volume manufacturing process for large structural

parts. Details of the material system for these uniweave laminates and the stitch density

of each plate are described in the section following the types of tests conducted in this

study.

Sublaminate Buckling Test. To understand the effect of stitching on sublaminate

buckling failure. Sublaminate Buckling Tests were conducted at NASA Langley Research

Center, Hampton, VA. The delamination damage in the specimens was simulated by

implanting teflon film inserts at various ply interfaces during the processing. Four

different types (i.e., extent) of delamination damage were investigated by varying the size,

number, and location of the teflon inserts. In addition, control specimens were processed

without any teflon inserts in them. The variation in stitch density was also studied for

each type of delamination damage. Details of the test and results are in Chapter - 2.

Mode I Fracture Toughness Test. Double-Cantilever-Beam (DCB) tests were

performed to measure Mode I fracture toughness. The effects of stitch yam, stitch density

and yarn denier on Gtc were studied. Stitch damage mechanisms were investigated using

Photomicrography and Scanning Electron Microscopy (SEM). Details of the test and

results are described in Chapter - 3.

Mode II Fracture Toughness Test. End-Notched-Flexure (ENF) tests were

performed to measure Mode II fracture toughness. The effects of stitch yam, stitch

density, yarn number, starter crack length, crack surface and contact roller pin friction and



unstitched length on GHc were studied. The unstitched length is defined as the distance

between the starter crack and the first stitch. Stitch damage mechanisms were investigated

using X-Radiography, Ultrasonic C-Scanning and Photomicrography. Details of the test

and results are described in Chapter - 4.

In addition to the above tests on the uniweave laminates provided to us by NASA

Langley Research Center, thin plain weave graphite/epoxy laminates were processed at

the Center for Studies of Advanced Structural Composites, University of Florida,

Gainesville FL, to gain insight into some of the processing aspects and to study impact

damage resistance and damage tolerance of thin stitched laminates. Towards this end,

Static Indentation-Flexure (SIF) tests followed by Compression-After-Impact (CAI) tests

were performed on these thin laminates. The indentation damage area due to the SIF test

and the propagation of the damage during the CAI test were studied by Ultrasonic C-

Scanning. Details of the material system of thin plain weave laminates along with the SIF

and CAI test findings are described in Chapter - 5.

Material System of Uniweave Laminates

The AS4 uniweave graphite fabric preforms were stitched using automated sewing

machines. The modified lock stitch as shown in Fig. 1-1 and Resin-Transfer-Molding

(RTM) process [21] were used by Douglas Aircraft Company to fabricate plates from

which the specimens were machined. Three different bobbin stitch yarns each with two

different stitch densities of 4xl/4" and 8xl/8" were used for stitching. Needle stitching

yarn used in all the cases was Kevlar®-29 (400 denier). Top and bottom plies of the



uniweave preform were covered by one layer of plain weave fiberglass cloth to act as

retainer cloth for the stitches. The details of the stitch yarns used are given in Table 1-1.

For the purposes of this document, the three bobbin stitch yarns will be referred to as:

Kevlar-2790, Glass-1250 and Glass-750. In addition, one unstitched plate for each type

of testing was processed for control specimens. Thus, seven plates (#31 to 37) were

processed for Sublaminate Buckling Test specimens as per details given in Table 1-2 and

Fig. 1-2, and another set of seven plates (#24 to 30) were processed for Mode I and

Mode II Fracture Toughness Tests as per details shown in Table 1-3 and Fig. 1-3. The

plates were Ultrasonically C-Scanned for quality and location of teflon inserts.

Representative C-Scans of the plates are shown in Figs. 1-4 and 1-5.

Modified Leek Stitch
Needle
thread

Bobbin
thread

Standard Lock Stitch
Needle

thread

Chain Stitch

Figure 1-1: Types of stitch locks [ Courtesy; Palmer, Dow and Smith: Ref. 21]

8



Table 1-1: Details of stitch yarns used

STITCH YARN BREAKING BREAKING

STRENGTH (Newton) STRENGTH (lbt)

Kevlar (1600 denier _ 2790 yd/lb) bobbin yarn 347 78

Glass (3570 denier _ 1250 yd/lb) bobbin yarn 262 59

Glass (5952 denier - 750 yd/lb) bobbin yarn 436 98

Kevlar (400 denier _ 11160 yd/lb) needle yarn 53 12

Table 1-2: Material system for Sublaminate Buckling Tests

PLATE LAY UP

#

31

[(45/0#

32 45)s]4 s

33
(Total

34 48

plies)*
35

36

37

STITCH

DENSITY

4x 1/4"

8xl/8"

4x 1/4"

8x1/8"

4xl/4"

8xl/8"

None

STITCH

YARN

Kevlar

Kevlar

Glass

Glass

Glass

Glass

YARN *

NUMBER

(yd/lb)

279O

2790

125O

1250

75O

750

YARN * AVERAGE

DENIER THICKNESS OF

(gm/9000 PLATES

meters) (mm)

1600

1600

3570

3570

5952

5952

6.90

7.20

7.00

7.20

6.85

7.45

6.60

* Each ply is AS4 uniweave graphite fabric. The stitching is in 0 ° fiber direction. The top and bottom plies

of the laminate have one plain weave fiberglass cloth layer each to retain the stitches.

The units for the linear density of a yarn can be Yarn Number (yards/lb) or Denier (grams/9000 meters

of yarn). The product of the Yarn Number and Denier will be a constant approximately equal to 4,463,728.
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- ;_ 5,_4-o,_-- i_,on-ff°--;- -•
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Figure 1-2: Details of a typical RTMed plate for Sublaminate Buckling Test

specimens
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Table 1-3: Material system for Mode I and Mode II Fracture Toughness Tests

PLATE
#

24

25

26

27

28

29

3O

LAY UP

Uni-

directional

24 plies*

STITCH

DENSITY

4xl/4"

8×1/8"

4x1/4"

8xl/8"

4xl/4"

8xl/8"

None

STITCH

YARN

Kevlar

Kevlar

Glass

Glass

Glass

Glass

YARN

NUMBER

(yards/lb)

2790

2790

1250

1250

750

750

DENIER

(gm/9000
meters)

1600

1600

3570

3570

5952

5952

AVERAGE

THICKNESS OF
PLATES

(mm)

3.683

4.191

3.810

4.191

4.318

4.445

3.556

t Each ply is AS4 uniweave graphite fabric. The stitching is in 0° fiber direction. A 26"x2.5"x0.0005" thick

teflon crack starter film is located at the midplane along the edge as shown in Figs.l-3 and 1-5. No stitching
is within 1/2" of the film. Top and bottom plies are covered by plain weave fiberglass cloth to retain the
stitches.

F o Stitching

(Teflonfilm)

I1'FilbefOi_:c|iorl II: ISTITCHEDREQION : ___

L., 26" .__1
I-- "1

Figure 1-3: A schematic of typical stitched RTMed plate for interlaminar fracture

toughness test specimens
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14.32

cuu.pcs

11.08

7.840

Figure 1-4: A typical C-Scan of a stitched plate for Sublaminate Buckling Test shows

position of teflon film strips.
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+3.20@
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-9.60_

Figure 1-5: A typical C-Scan of a plate for Mode I and Mode II Fracture Toughness Test
shows the teflon film strip for creating starter crack.
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CHAPTER 2

SUBLAMINATE BUCKLING TEST

Sublaminate Buckling and Test Approach

Residual compression strength of a laminate for a given impact damage is used

to compare and characterize different material systems for damage tolerance. In fiber

composites, impact damage leads to delaminations, matrix cracking and fiber breaking.

The delaminations create sublaminates of different sizes in a laminate. These sublaminates

tend to buckle at much smaller loads during compression. Therefore, sublaminate buckling

is an important failure mode in fiber composite laminates [11]. This study investigated

effects of stitching on sublaminate buckling behavior which is expected to correlate with

the CAI strength. Specimens with different stitch densities and known delaminations were

subjected to compression loading. The delaminations simulate the impact damage and

were created by inserting teflon film strips at various ply interfaces during processing as

described in Chapter-1. The University of Florida Compression-After-Impact (UF-CAI)

test fixture was used for the tests. The fixture allows end compression loading and can

be adapted for different gage lengths as shown in Fig. 2-1. The fixture evolved from an

existing NASA post-impact compression fatigue test fixture at the Center for Studies of

Advanced Structural Composites, University of Florida. The design considerations and its

experimental validation are given in Appendix-A.
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Top Crosshead Pl I l

Spec rmen _C)_

Ant p-buckl ing plates

L Shaped support bracke

O_ tom Crosshead Plate

Specimen

An i-buck IIng plate

L Shaped

support

brackets _---_---b-

/

[

Gage Lenglh = ?9"

I I

SPECIMEN HEIGHT = 5"

Gs 24"

I

SPECIMEN HEIGHT : 4"

1
/

' I

SPECI_IEN HEIGHT = 3'

Figure 2-1: A sketch of the University of Florida Compression-After-Impact

(UF-CAI) test fixture along with adaptations required for different specimen heights
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Specimen Geometry and Test Variables

Each of the seven RTMed plates of the material system processed had four

different types of delaminations (numbered Damage Type #1 to 4 for purpose of this

report, see Fig. 1-2). The part of the plate without delaminations i.e., no teflon (numbered

Damage Type #Zero in this report) was used to cut control specimens. At least 3

specimens each of every damage category were cut and mounted with back to back

Micro-Measurement group type CEA-06-250-UW-350 strain gages. The strain gages were

mounted to observe global instabilities during compression. The details of a typical

specimen are shown in a sketch in Fig. 2-2.

LOAB

L_ SpEa.E.

I

: t /

i

/

Figure 2-2: A sketch of typical sublaminate buckling

specimen
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The specimenswerecut suchthatthegagelengthwas1.9"longerthanthe length

of thedelaminations,andthe delaminationswerelocatedcentrally in the specimen.The

delaminationsran throughtheentirewidth of thespecimen.Thus,thespecimenswith 0.5"

teflon insertshad a total gagelengthof 2.4" and the specimenswith 1.0" teflon inserts

hada total gagelengthof 2.9". The specimenshaving2.4" gagelengthwere4" tall and

thereforetestedusing the 4" adaptationof the UF-CAI test fixture (seeFig. 2-1). The

other specimenswere 5" tall and were testedusing the 5" adaptationof the UF-CAI

fixture. The side edgesurfaceswere paintedwhite with typewriter correctionfluid to

facilitate easyvisualizationof sublaminatebuckling.

TestProceduresandDataReduction

The testswere performedat the facilities of NASA Langley ResearchCenterat

Hampton,VA using a 50 kips capacityMTS 810 testing system,type 647 hydraulic

wedgegrips and an MTS 458.20 microprofiler controller to conductthe test in stroke

control mode.The loadingendedgesweremachinedflat andparallel to eachother.It is

importantthat the fixture surfaceson which the specimenrestsarecleananddevoidof

any foreign matteras thesespotsmay becomepotential stressconcentrationpoints at

which the failure may initiate leadingto end brooming.Further,adequatecaremust be

exercisedto align the specimen,fixture andthe loadingplatform to ensurevertical axial

loading. Rateof compressionloadingwas0.03"/min.Real time load, displacementand

strain signalswere acquiredusing Micro-MeasurementsSystem4000 data acquisition

system.The compressionfailure could mostly be anticipatedby strain gage signals
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"flaring outward"afterthe initial superimposedmovementindicativeof compression.As

thestraingagesignalsbeginto flare out significantly(indicativeof buckling in thestrain

gagemountedregion),a loud "bang" soundcould beheardafter a few cracklingsounds

in quick succession.This is almostimmediatelyaccompaniedwith a drop in loadsignal.

The specimenis unloadedthereafter.The acquiredload, displacementand strain gage

signalswere transferredto a spreadsheetsoftware (Excel) accompanyingthe Micro-

MeasurementsSystem4000 data acquisition system for plotting and analysis.The

compressionstrengthwascomputedfrom thepeak loadand the averagecross-sectional

area.An averagethicknessof the regionwithout the teflon insertswasusedto calculate

cross-sectionalarea.Theresultsof theCAI strengthfrom thetestsof 126specimenscut

from the sevenplatesaregiven in TablesA-I to A-7 in Appendix A. A representative

stress-straincurveobtainedfor anunstitchedanda stitchedlaminateareshownin Figs.

2-3 and 2-4 respectively.A total of 131 specimens were tested including 5 additional

repeats for cases where end brooming was observed.

Results and Discussions

Effect of stitching on sublaminate buckling strength

It is established by previous studies [22] that compression strength increases with

reduction in gage length. In this study the two selected gage lengths (2.9" and 2.4")

showed a similar trend. Therefore, the compression strength pertaining to 2.9" gage length

was scaled for 2.4" gage length specimens for study of trend analysis only. An example

of a scale factor used is as follows:
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STRESS vs. STRAIN during SUBLAMINATE BUCKLING TEST
(Specimen P37S20" Unatitched)
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Figure 2-3: A typical stress-strain response for an unstitched laminate.
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Figure 2-4: A typical stress-strain response for a stitched laminate.
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Exampleto calculatethe scalefactor to convert 2.9" gagelength CAI strengthto 2.4"

gagelengthCAI strengthfor Plate#31:

Plate#31;Stitched:Kevlar 2790 yds/lb.,4xl/4", gageLength= 2.9", no teflon

CAI strengthof specimens#P31S1to #P31S3 (referTableA-2) = 63.15 ksi

Plate#3l; Stitched:Kevlar 2790 yds/lb.,4xl/4", gageLength = 2.4", no teflon

CAI strengthof specimens#P31S4to #P31S6(referTable A-2) = 72.88ksi

therefore,

ScaleFactorto normalizeCAI strengthof 2.9" gagelength

to CAI strengthof 2.4" gagelength= (72.880/63.149)= 1.154

Similarly, scalefactorswerecalculatedfor otherplates.All arelisted below:

Plate#31; Stitched:Kevlar 2790

Plate#32; Stitched:Kevlar 2790

Plate#33; Stitched:Glass

Plate#34; Stitched:Glass

Plate#35; Stitched:Glass

Plate#36; Stitched:Glass

Plate#37;Unstitched

4x1/4"

8xl/8"

1250,4xl/4"

1250,8xl/8"

750,4x1/4"

750,8x1/8"

- 1.154

= 1.104

= 1.183

= 1.119

= 1.142

= 1.090

= 1.274

Theaveragevaluesof CAI strengthnormalizedfor 2.4" gagelengtharegiven in

Table2-1.The variationin CAI strengthdatadid not exceed5% in 90 specimensout of

thetotal 126testsandit did notexceed10%in the remainingspecimenswhich indicates

good consistencyin test results. CAI strengthsof different damagetypes for the

unstitchedlaminatesareplotted in Fig. 2-5. The CAI strengthdropssignificantly with
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increasing delaminations for the unstitched laminates. The effect of stitching with different

yarns of 4xl/4" stitch density is shown in Fig. 2-6. The effect of increased stitch density

8xl/8" can be observed from Fig. 2-7. It is clear from the CAI strength data and the

above mentioned graphs that all three stitch yarns seem to improve the CAI strength to

about same extent when their stitch densities are equal. This may be due to the fact that

any through-the-thickness stitch yarn with sufficient breaking strength and stiffness is able

to restrain buckling of the sublaminates by holding them together. More evidence of this

is discussed in the next section on the sublaminate buckling failure mode.

CAI of UNSTITCHED LAMINATES

(3

1 oo

90

8O

70

60

50-

40-

30-

20

10

0
O 1 2 3

"I'YPEof DAMAGE

Figure 2-5: Drop of compression strength in unstitched laminates with different

types of damages.
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Table 2-1: Effect of Stitch Yarn and Stitch Density on CAI strength

Type of

Damage*

Zero (No

Damage)

CAI (ksi)

Plate #31,

Stitched:

Kevlar

2790,4x 1/4

72.88

71.28

54.44

43.27

33.37

CAI (ksi) CAI (ksi)

Plate #32, Plate #33,

Stitched: Stitched:

Kevlar Glass

2790,8xl/8 1250,4xl/4

69.24

68.79

63.96

65.11

60.04

75.04

68.33

56.86

47.65

39.46

CAI (ksi)

Plate #34,

Stitched:

Glass

1250,8x l/8

69.72

60.51

69.51

62.22

69.54

CAI (ksi)

Plate #35,

Stitched:

Glass

750,4xl/4

73.53

66.58

54.68

45.71

38.82

CAI (ksi)

Plate #36,

Stitched:

Glass

750, 8xl/8

71.53

58.77

62.91

57.24

64.01

CAI (ksi)

Plate #37,

Un-

stitched

80.92

76.36

48.76

41.7

16.9

Damage Type #1 = 3 teflon film inserts, each of 0.5" height running through the entire width of

the specimen and located at [A/A/T/A/A/'!"_]_ where A = (45/0/45)_ and T is a teflon insert.

Thickness of teflon film in all cases was 0.0005".

Damage Type #2 = same as Damage Type #1 but the teflon film inserts are of 1.0" height each.

Damage type #3 = 7 teflon film inserts, each of 0.5" height and located at [(A/T)3/A/!]_ .

Damage Type #4 = same as Damage Type #3 but the teflon film inserts were of 1.0" height each.
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CAI STRENGTH of 4xl/4" STITCHED LAMINATES
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Figure 2-6: Effect of 4xl/4" stitch density yarns on CAI strength
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Figure 2-7: Effect of 8xl/8" stitch density yarns on CAI strength
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Apparent loss of initial compressive strength. There seems to be a slight loss of

initial compressive strength due to stitching in case of undamaged specimens (about 6%

for 4xl/4" stitch density and about 12% for 8xl/8" stitch density). This compares well

with earlier studies like [16] but we consider this loss as apparent due to the increased

thickness of stitched laminates. The nominal increase in thickness of 4x 1/4" stitch density

laminates was 7% and for the 8xl/8" laminates was about 14%. It is to be noted that the

stitch yarns are not in the compressive load bearing direction. The added thickness due

to stitch yarn gives an impression as if stitching degrades in-plane compressive properties.

Therefore, this loss of initial compressive strength has to be considered with care. The

penalty for stitching is the added thickness of the structure and not reduced compressive

strength. The apparent initial drop in the compressive strength is plotted for all types of

stitch yarns in Fig.2-8.

Figure 2-8: Initial compression strength appears to drop by

12% due to stitching.
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Effect of stitch density

Apart from the initial apparent loss of the compressive strength, the CAI strength

of delaminated stitched laminates showed excellent improvement over the delaminated

unstitched laminates. The improvement in the case of the worst delaminated specimens

(Damage type #4) with high stitch density (8xl/8") was as much as 400% over the

unstitched laminates. To study a comparative trend of the improvement in CAI strength

data due to stitch density, the data were curve fitted using a locally weighted linear

regression (Axum software) and the curves are plotted in Fig 2-9. Here, it was assumed

that the different delaminated states (i.e., Damage types #Zero to 4) simulate impact

damage of an increasing order.
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90
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70
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EFFECT of STITCHING on CAI STRENGTH

"'- ._-" Kevlar 2790, 4xi14"Kevlar 2790, 8xl/8"
Glass 1 250, 4xl/4"¢
Gloss 1 250. 8xl/8"

---v..-- Gloss 750. 4xl/4"
--0--- Gloss 750. 8xl/8"
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--'=_==r .... --lg-----=_,

-. :::_?..-.-.....;.
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A

I i I _ I , I _ I
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Figure 2-9: A trend of the effect of stitch density on CAI strength
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Effect of stitching on failure mode

It was observed that the damaged unstitched laminates tend to fail by buckling of

the sublaminates. This could be seen from the white painted side edge surfaces. The

painted surface opens up at the teflon inserted interplies and the laminate buckles, but the

laminate regains its geometry after the unloading. This failure mode is sketched in Fig.

2-10. However, stitching tends to hold the sublaminates together thus prevent buckling.

The stitch yarns will be subjected to tensile loading in the process of trying to restraint

sublaminate buckling. Therefore, stitching changes the failure mode from sublaminate

buckling to typical small kink zone formation and subsequent fiber fracture. This also

explains the impressive gains in strength due to 8xl/8" stitch density as compared to

4xl/4" density. This type of failure is schematically shown in Fig. 2-11. A typical strain

gage behavior observed in most of the specimens is shown in Fig. 2-12.

rBflofl

,R1erls

tOAD

1

T
(a) Specimen befor e [bl Sublamina tes buckle _ c] 5pec lmen r egalns

loading delamlnatlons increase original shape

durlng compression alter unloadlng

Figure 2-10: A sketch of the typical sublaminate buckling failure mode of

delaminated unstitched specimens
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Figure 2-12: A typical strain gage reading curve for a delaminated unstitched and a
stitched laminate.
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An empirical relation for optimum stitch density

As observed earlier, the effect of different stitch yarns is insignificant if the

selected stitch density is equal and the yarn has sufficient breaking slrength and stiffness

(e.g., Kevlar, Glass, Carbon or equivalent). Therefore, the average strength of the stitched

laminates, regardless of the type of stitch yarn used, can be used as an empirical guide

for determining optimum stitch density for a desired strength. The overall average strength

data of stitched laminates for the worst case scenario (Damage type #4) is shown in

Table 2-2.

Table 2-2: Increase in residual compression strength due to stitch density

STITCH DENSITY

(Stitches/in 2)

CAI STRENGTH OF

UNDAMAGED

LAMINATES (ksi)

CAI STRENGTH OF

DAMAGED (TYPE #4)

LAMINATES (ksi)

% OF

RESIDUAL

COMPRESSION

STRENGTH

0 (UNSTITCHED) 81 17 21

16 (4x 1/4") 73 37 46

64 (8x 1/8") 70 65 80

The empirical variation of residual compression strength with stitch density is

plotted in Fig. 2-13. As can be inferred from this graph, the strength improves with stitch

density and reaches a peak when the stitch density is high. As an example, to ensure a

minimum residual compression strength of 60 ksi (i.e., 75% of original compression

strength) in a wing box structure of an aircraft using the material system studied in this

report, a designer may select a stitch density of about 45 stitches/in 2 from the above
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empirical relation.Further improvementof strengthfor a stitch densityof more than45

stitches/in2 is insignificant asthe curve tendsto reachits peak.However,a higher than

45stitches/in2stitchdensitymaybeselectedif higherimpactdamagestatesthantheone

investigatedin this studyareconsidered.
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Figure 2-13: An empirical relation between stitch density and CAI strength
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CHAPTER 3
MODE I FRACTURE TOUGHNESS TEST

Test Approach

In orderto measureModeI fracturetoughnessof unstitchedandstitcheduniweave

laminatesDouble-Cantilever-Beam(DCB) testswereconductedfollowing guidelinesby

Carlsson [23]. Preliminarytestsindicatedintermittentanddynamiccrackpropagationas

the stitchesbreakduring loading.It is difficult to containcrackpropagationbetweentwo

successivestitchesto recordthecritical loadfor crackpropagation.Thecrackfront moves

aheadof unbrokenstitchesduring the loading. Hence,the energy-areaapproachwas

chosento calculateaneffectivecritical strainenergyreleaserate(G_) ratherthanusing

the load at which crackpropagates.It wasconsideredthat the approachwould give a

betteraverageestimateof effectiveG_casthestitchedlaminatescannotbestrictly treated

in accordancewith beamtheoryformulationdueto partiallybrokenstitchesremainingin

the wake of the crack front. Stitch damage mechanism were studied using

PhotomicrographyandScanningElectronMicroscopy.A moreeconomicalandefficient

methodof installinghingesfor preparationof specimenswasalsoexplored.
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Test VariablesandSpecimenPreparation

Specimen geometry_

Nominal dimensions of a typical specimen cut from the RTMed plate are shown

in Fig. 3-1 The side edges of the specimen were painted white with a thin layer of paint

to enhance crack detection. A natural starter crack extending up to the first stitch beyond

the teflon film was carefully created using a sharp surgical knife. A few initial tests with

increased starter crack length of 2" revealed large curvature and deflections of the beam

during the DCB test. Therefore, the initial starter crack length was kept nominally at one

inch. Special attention was paid to ensure uniform stitch density among a particular set

of specimens. The geometry of the specimen meets the design considerations required to

keep the test in the linear regime [16].

w_=2_! a = 25.4 rnm

4__ L=127 mrn

Figure 3-1: A schematic diagram of a DCB specimen cut from the RTMed plates
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Hinge installation on unstitched and 4xl/4" stitched specimens

Adhesively bonded and/or mechanically fastened hinges have been tried by

researchers in past. Most adhesives used need high temperature curing (250 -350 0 F) to

make a strong and noncompliant bond (e.g., 3M AF163-2K-06 or HYSOL 398). These

adhesives are expensive. Mechanical means to install hinges cause damage to the

specimens, are labor intensive, and use expensive special cutting tools. A survey of

various new engineering products revealed that new "Third generation" epoxies [24] may

meet the DCB test requirements. One such product DP-460 epoxy was successfully tried

out. This adhesive is inexpensive, room temperature curable and easy to use with its

manufacturer supplied applicator and mixing nozzles. Surface preparation methods as per

standard engineering practices for application of adhesives were followed. Care was taken

to align the hinges using a locally fabricated fixture as suggested by Carlsson [23]. Single

leaf hinges of 1" length (Fig. 3-2a) were suitable for unstitched laminates and Double leaf

hinges of 2" length (Fig. 3-2b) were suitable for all 4xl/4" stitched laminates.

Hinge installation on 8×1/8" stitched specimens

Six different hinges schematically shown in Fig. 3-2a through Fig. 3-2d were

evaluated. The difficulties encountered are presented in the chronological order of

evolution. The 1" and 2" Single or Double leaf hinges failed due to insufficient adhesive

bond area or stress concentration at hinge pivots. Hence, it was decided to integrally

machine the hinges out of a solid block of aluminum alloy as shown in Fig. 3-2c. A

provision to connect the hoisting clevis through a pin was made. These hinges worked
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DCB TESTING of 8xl/8" STITCH DENSITY LAMINATES

F
1" OR 2"

!
Lr I

i 1" OR 2"

SINGLE LEAF HINGES

DOUBLE LEAF HINGES

FIG3-2[a]

FIG3-2[b]

LOkO T

INTEGRALLY MACHINED HINGES

FIG3-2[c]

LOAO l

INTEGRALLY MACHINED TABS

BONDED OVER ENTIRE SPECIMEN FIG3-2[d]

Figure 3-2: Various types of hinges/tabbing methods experimented for 8x1/8" stitched

laminates. The hinge shown in Fig. 3-2 (c) did not fail but the specimen failed.

34

ORIQINAL PAGE IS
oF Poor QUAZ.Wy



well as far as bond strength was concerned but the fracture toughness of 8xl/8" stitched

specimens was found to be so high that the specimen failed in bending about 1/4" away

from the initial starter crack front line. In order to strengthen the specimen, new integrally

machined tabs of steel as shown in Fig. 3-2d were bonded over the entire surface of the

specimen. Guenon [25] has studied Mode I interlaminar fracture toughness of 3-D woven

composites using a "tabbed specimen" which is similar to the one in Fig.3-2d. However,

it was found that this type of tabbing is not suitable for stitched laminates due to the

nature of stitch failure mechanisms as explained in the following section. Therefore, it

was not possible to experimentally determine G_c for 8xl/8" stitched specimens of this

study using this type of DCB test. The specimens would have to be made thick enough

to prevent bending failure.

Test Procedures and Data Reduction

The DCB tests were conducted in stroke control mode using a 12 kips screw

driven Tinius-Olsen machine at the Center for Studies of Advanced Structural

Composites, University of Florida. The load and deflection real time signals were

acquired using a calibrated load cell and a Linear Variable Differential Transformer

(LVDT) output into a Nicolet digital oscilloscope 4094 with XF-44 recorder. The crack

propagation was observed using a magnification lens (×5) and crack growth was allowed

to increment about 1/2" before commencement of unloading. This 1/2" propagation of the

crack invariably extended over about two stitches. Whenever the crack front on both sides

of the specimen was observed to be different, an average was taken to get the incremental
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crack growth (Aa). As the energy-area approach is being used for calculating Gjc, each

crack propagation is equivalent to testing a new specimen with an increased initial crack

length. The crack was allowed to propagate for 5-6 increments in each specimen. The

critical strain energy release rate is given by:

AW _3-1)
Gtc- AA

where AW is the work done during the incremental crack propagation and AA is the new

incremental crack surface area created. The work done was reduced from the area under

the P-8 curve using a spreadsheet software (Quattro Pro), and the crack surface area was

obtained by multiplying the width of the specimen by the incremental crack propagation

measured on the side edge of the specimen. It was assumed that the crack front follows

a near straight line path and propagates in a self-similar manner. The results of the

calculation for the critical strain energy release rate are given in Table B-1 through Table

B-7 in Appendix-B. A set of representative P-8 curves for an unstitched and a stitched

laminate are shown in Fig. 3-3 and Fig. 3-4 respectively. The roughness of acquired load

and displacement signals is attributable to noise in the machine circuitry.

Results and Discussions

G_c of unstitched and the 4xl/4" stitched laminates

The reduced data shows about 7% variation for the unstitched and up to about

25% in the 4×1/4" stitched laminates in the obtained G_c values. The Mode I critical strain

energy release rates for various laminates are compared in Fig. 3-5.
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Figure 3-5: Stitching increases Mode I fracture toughness by 15-30 times for

4x 1/4" stitch density laminates.

Stitching significantly increases the Mode I fracture toughness. The average

increase in Mode I fracture toughness due to stitching is at least an order higher than the

unstitched laminates. The use of Kevlar-2790 as stitching yarn improved the fracture

toughness by about 15 times, the Glass-1250 improved it by about 30 times, and the

Glass-750 increased the toughness by about 21 times. The G_c value for the unstitched

laminates was 302.6 J/m 2. The variation in G_c with crack length is shown in Figs. 3-6

through 3-8 for Kevlar-2790, Glass-1250 and Glass-750 stitched specimens respectively.

The values of all the specimens were curve fitted using a polynomial curve fit. It appears

that, except for the first one or two crack increments, the energy required to propagate

the crack remains constant with increasing crack length. The first initiation of crack
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propagation seems to occur at lower energy requirements. This could be due to

manufacturing flaws such as the first stitch line not being perfectly straight. Subsequently,

the critical energy release rate appears to stabilize as the crack starts propagating in a self

similar manner. The first low value of G_c introduces a variation of up to 25% in the data

for the stitched laminates. Overall, the variation in the G_c does not seem to be significant

as the crack grows. The fracture toughness reaches a fairly steady value soon after the

onset of crack propagation. This also brings out the importance of ensuring that the first

stitch line is straight.
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Figure 3-6: G]c vs. Crack length for Kevlar-2790, 4xl/4" stitched laminate
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Figure 3-7: Gic vs. Crack length for Glass-1250, 4x1/4" stitched laminates
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Figure 3-8: G1c vs. Crack length for Glass-750, 4x1/4" stitched laminates
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Stitch Failure Mechanism and Crack Propagation

The crack propagation for the unstitched laminates was gradual and steady, while

the crack propagation for the stitched followed an intermittent and dynamic pattern. A

step-by-step scenario of crack propagation and stitch breaking is described in Figs. 3-9a

through 3-9e for a complete DCB test. The sequence and pattern of this mechanism was

observed to be same for all three types of stitching yarns. However, the precise location

of stitch failure varied in the case of Glass-750 as explained later in this section.

LOAD

I Stitch

II Stitch

III Stitch

Stitch

-'t
SPECIMEN BEFORE START OF LOADING

a

Figure 3-9 (a): The specimen before loading in the DCB test. The starter crack

length is close to the first stitch line. Status of the first five stitches is shown.
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Figure 3-9 (b): Load and deflection start to rise on the Nicolet oscilloscope screen.

Both increase linearly. Crack starts to slightly propagate (not more than 1/4", close

to second stitch) without any perceptible drop in load.

Figure 3-9 (e): For some time no further crack propagation. P-8 continue to rise.

Then, cracking sounds are heard, crack extends to third stitch, first debonded stitch

can be seen, load drop observed. Second appears bonded.
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Figure 3-9(d): A little more loading breaks the first stitch. No perceptible load

drop is observed at this point. Crack propagates up to the 4th stitch. Second

partially debonded stitch can be seen. Third appears bonded.

T

Figure 3-9(e): P-5 continue to rise. After some time crackling sounds heard again.

Crack extends to fifth stitch. Second stitch fails completely. Third partially

debonded can be seen. Fourth appears bonded.
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A photographof a cracksurfacewith bobbin yam failure closeto the stitch lock

position is shown in Fig.3-10. This pattern was observedfor Kevlar-2790 stitched

laminates.Thenatureandlocationof Glass-1250stitchyarnfailure wasstrikingly similar

to thatof theKevlar. It appearsthatoncethebobbinyarnhasdebonded/shearedfrom the

matrix, the stitch lock providesthenecessarystressconcentrationfor the yarnsto fail at

thatlocation.Glass-750yamsfailed in thesamesequencebut showeddifferent damage.

In this case,the bobbin yarnsafter getting debondedfrom the matrix, did not fail by

splitting at the stitch lock, insteadthey broke the needleyarn, therebycreatinga free

surfaceon top (i.e., aholeon top surfaceof the laminate).It is to benotedthat theGlass-

750 yarnshavea higherstrengththantheKevlar or Glass-1250.It may be interestingto

seetheeffectof variationof needleyam denieron thefracturetoughness.This variation

wasnot studiedin this program.Thefailure of thestitch yam (bobbinor needle)always

at the stitch lock position bringsout the critical importanceof this position to fracture

toughness.In this context, the needto incorporatea suitable tension setting/sensing

mechanismin thesewingmachineswhich will notallow inadvertentsmallchangesin the

position of the stitch lock during stitching processbecomesimportant. Further, it is

recalledthat thecreationof theholesin the top surfaceis alsothe causefor unsuitability

of the integrally machinedtabsshownin Fig. 3-2d.Despitethe tab beingbondedto the

entiresurfaceof thespecimen,theadhesivebondfails dueto a numberof holescreated

on the specimensurface.A photographof the intact Glass-750bobbin yarn and a

photomicrographof the top surfaceof the laminateshowinga holecausedby the failure

of needleyarn areshownin Figs. 3-11 and3-12 respectively.
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Fig. 3-10:A photographof failed Kevlar -2790 bobbinyamsat needleyarn interlock

Fig. 3-11: A photographof failed Glass-750bobbinyam cracksurface
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Fig. 3-12: A photographof a hole createdon the top surfaceby theGlass-750bobbin
yarnbreakingthe needleyarn
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CompressiveLoad Observedduring Unloadingin DCB Tests

During unloadingof the specimenthe top sublaminatestartsbearingagainstthe

protrudingbrokenstitchstems.Thusthespecimenexerteda slight compressiveloadnear

the end of the loadingcurve.This observationis sketchedin Fig.3-13 and can also be

noted in the typical P-6 curve of a stitched laminate (Fig.3-4). The work done to

overcomethis resistingforce is not significant and does not qualitatively changethe

resultsobtainedusingthe areaof the P-6curve.The openedcrack surfacesdo not fully

close after the unloading due to this phenomenonin the stitched laminates.This

phenomenonwasobservedduringtheinitial two or threecrackincrementsanddiminishes

with increasingcrack length due to increasedlength of crackedbeam.This type of

unloading curve is peculiar to stitched laminatesonly and is not observed in the

unstitchedlaminates.

BROKEN STITCHES PREVENT CRACK CLOSURE

_f
uuu'"wuu ddu 

SPECIMEN AFTER UNLOADING

Figure 3-13: Towards the end of the unloading cycle the stubs of the broken bobbir

yarn prevent the crack from closing completely. This tends to exert a small

compressive force as seen in a typical P-6 curve.
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Matrix Deformation and Stitch Surface Morphology

In order to gain insight into debonding, stitch failure and the role of stitch-matrix

interaction during the crack opening phase, Scanning Electron Microscopy was conducted

on the top surface of a failed stitch and the adjoining matrix area. A stitch that was not

compressed during the unloading phase of the test was selected for this study. Some of

these photographs are shown in the Figs. 3-14 through 3-17. These studies indicate that

the stitch yarn movement is resisted by the matrix surrounding it. Though the stitch yarn

in a DCB test is assumed to fail in tension, it does deform the adjoining matrix as the

yarn tends to bend when the crack openings grow. The resistance offered by the matrix

adds to the toughness brought about by the yarn tensile strength. The texture of the

plastically deformed matrix appears to be like that of "ploughing" of earth. The matrix

appears "ploughed" by the stitch as seen in the Fig. 3-15.
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Fig. 3-14:Glass-750 stitch yarn top surface after failure

Figure 3-15: Matrix in the adjoining area of the Glass -750 stitch appears "ploughed"
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Figure 3-16:Kevlar-2790 stitch yarn split at the needle yarn interlock

Figure 3-17: Top crack surface of the failed Kevlar-2790 stitch shown in Fig.3-16
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CHAPTER 4

MODE II FRACTURE TOUGHNESS TEST

Test Approach and Test Variables

End-Notched-Flexure (ENF) tests were conducted to measure Mode II fracture

toughness of the uniweave laminates following guidelines by Carlsson [23]. The behavior

of crack propagation in the unstitched and the stitched laminates was studied. Limitations

of calculating critical strain energy release rate (Guc) of stitched composites using existing

standard beam theory formulation were studied. New methods to determine the GII ,, for

stitched composites have been explored. Photomicrography, X-Radiography and Ultrasonic

C-Scanning were used to identify the extent of crack propagation. The contribution of the

stitching yarn on the effective GHc values has been investigated. The effects of crack

surface friction and roller pin contact friction were studied. The effects of the following

variables were investigated: starter crack length (ao), length of specimen (2L), type of

stitching yarn and stitch density, frictional effects and unstitched length (defined as the

distance between the starter crack and the first stitch). A schematic of the loading

conditions and the specimen geometry are shown in Fig. 4-1. The specimens were

machined from the same plates as those for the DCB testing. A test matrix is shown in

Table 4-1.
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LOAD

I

PINS L L= 50 _ L=50 --

Figure 4-1: A schematic diagram of an ENF specimen. All dimensions are in mm.

Table 4-1: ENF Test matrix

UNSTITCHED LAMINATES

CRACK LENGTH (L)

(.,,)

1.0" 2.0"

1.5" 2.5"

2.0" 3.0"

LUBRICATION

No 9

Yes 3

No 3

# OF SPECIMENS

STITCHED LAMINATES (L=2.0" & CRACK LENGTH =l.0")

STITCH YARN DENIER STITCH DENSITY # OF SPECIMENS

Kevlar-2790 1600 4× 1/4" 7

Kev lar-2790 1600 8x 1/8" 7

G lass- 1250 3570 4x 1/4" 6

Glass- 1250 3570 8× 1/8" 6

Glass-750 5952 4×1/4" 6

Glass-750 5952 8×1/8" 6
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Test Procedures and Data Reduction

The testing was conducted in stroke control mode using the 12 kips screw driven

Tinius-Olsen testing machine. The load and displacement were measured by acquiring the

load cell and LVDT signal into the Nicolet digital oscilloscope. The loading rate was 0.02

inch per minute. Crack propagation was observed with the help of a magnifying lens (x5)

during the test. Unlike the DCB testing, a thin layer of white paint did not help in the

detection of crack propagation during ENF tests. Therefore, it was subsequently not used.

First, a set of 6 specimens each of unstitched and stitched (Kevlar-2790, 4xl/4")

laminates were loaded and unloaded to increasing peak loads to understand the load-

displacement pattern. During these tests, the crack front extended incrementally as the

load increased. These specimens were subsequently used to investigate crack propagation

and stitch failure mechanisms using Photomicrography and Ultrasonic C-Scanning. Having

established a scheme, the remaining sets of 6 specimens each were loaded up to a point

where the crack front approximately extended up to about the center line. A P-t5 curve

for each test was plotted. A representative load-displacement curve for an unstitched and

a stitched laminate is shown in Fig. 4-2. For the unstitched laminates, the critical load (P,)

to initiate crack propagation was noted, using the compliance (C) from the P-5 curve and

other dimensions of the specimen, the critical strain energy release rate was calculated

using existing elastic beam theory formula as described in the following section. A typical

P-8 curve for intermediate stages of crack propagation for a stitched laminate is also

shown at Fig. 4-3.
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Figure 4-2: A typical P-5 curve for an unstitched and stitched laminate ENF test
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Figure 4-3: A typical set of P-6 curves for intermediate steps of crack propagation
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Methods to Determine Effective GHc of Stitched Laminates

Existing method using beam theory, formula and its applicability to stitched laminates

The existing literature uses the well known formula to calculate the critical strain

energy release rate[16,23]for a conventional unstitched laminate:

9 P2Ca z
Gzz c- (a-l)

2w(2L3+2a 3)

where, w is the width of the specimen and P is the critical load at the time of crack

propagation. The average value for the unstitched laminates obtained by this method was

670.72 J/m 2. Energy-area approach similar to the one used for calculation of G_c was also

used to compare the G_lc values obtained from the formula. An average G_lcof 672.77 J/m 2

was obtained indicating excellent correlation between the two approaches.

While the crack propagation in an unstitched laminate is unsteady as is indicated

by the sudden drop in load on the P-6 curve, the crack propagation in the stitched

specimens was observed to be steady. The P-6 curves for all the stitched laminates were

observed to follow the same nonlinear pattern during the loading. There is no sudden

drop in load as the crack starts propagating. Compliance of the specimen gradually

changes as the crack propagates. Therefore, the use of beam theory formula using

nonlinear Pc and linear C as suggested by Ogo [16] will not give a correct estimate of G_jc

in the case of stitched laminates. Two new methods to calculate GHc for the stitched
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laminatesarepresentedin the following section.Preliminaryphotomicrographicstudies

of testedstitchedspecimenssuggestthatthecracklengthcannot bemeasuredaccurately

from thevisual inspectionof thesideedge.X-Radiographyof thecracksurfacewastried

as discussedlater. Then, C-Scans were taken and it was found that actual crack

propagationwas much more than visually observed.Hence, the values of crack

propagationmeasuredby C-Scanswereusedin computationsfor thefirst of thetwo new

methodspresented.

New methods to determine G_c of stitched laminates

(1) Area method using C-Scan

(2) Equivalent area method using compliance of unloading curve

Area method using C-Scan

STEPS:

• Ensure starter crack at first stitch line

• Ensure crack propagates to at least few stitches during test

• Calculate work done (AW) from P-_i curve

• Find area of crack surface (AA) using C-scan

• GHc= (AW)/(AA)

Equivalent area method using compliance of unloading curve

STEPS:

Calculate El from linear compliance (C) of the loading curve

Calculate compliance of unloading curve (C/) at 500 N line (i.e., a
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20% less load than the P_. of linear loading curve)

Calculate effective crack length (ae_) using C / and the following

formulae:

For a < L

C t- (2L3+3a_ef) (4-2)
96EI

For a>L

C/= _ (2L_aoff) 3 L3+--

32EI 12EI
(4-3)

Select appropriate a_ff out of the two calculated above

Calculate crack surface area (AA) using the selected a,_

Glk = (AW)/(AA)

Results and Discussions

Effect of different stitch yarns and stitch density on G.__

The G_Ic values using all three methods described above (i.e., Beam theory

formula, Area method using C-Scan and the Equivalent area method using compliance of

the unloading curve) were calculated and are tabulated in Tables C-l, C-2 and C-3

respectively in Appendix-C. A bar chart of the average values of the data is given in Fig.

4-4 showing the comparison of G,_ values using beam theory formula and the two new

methods presented above. It is recalled that the crack had propagated up to about
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EFFECT of STITCHING on GIIc
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Figure 4-4: Effect of stitching on G.¢. The crack propagated up to about center line

(Aa=O.5xL) in all cases.
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the center line in all these tests as found by the C-Scans. As expected, the values of GHc

obtained using beam theory formulation do not show any appreciable increase, indicating

that the intrinsic Mode II critical strain energy release rate of the material remains same.

However, the stitching does significantly improve the effective or apparent GHc as

indicated by the values obtained using both the new area methods. The energy required

to propagate the crack is apparently more due to the stitches. This is because not all the

imparted energy during the test directly goes to the crack front, a good amount of the

energy is also being used in other stitch damage mechanisms. The stitched laminate

appears to behave more like a structure.

The Area method using C-Scans seems to be the upper bound GHc while the

Equivalent area method using compliance of the unloading curve gives the lower bound

values. The increase in apparent GHc values is very impressive regardless of the stitch

yarn. It is about 5-15 times that of the unstitched laminates using the conservative lower

bound values. It appears that the crack length detected by the C-Scanning is smaller than

the effective crack propagation length. For each stitch material the apparent GHc increases

with increasing stitch density except for the Glass-750 where the change is insignificant

due to increased stitch density. Thus, it can be concluded that stitching significantly

improves the Mode II fracture toughness. The possible damage mechanisms observed are

discussed in the following section which further explains the rise in Gu_.

59



Stitch failure mechanism and Contribution of the stitch yam

The crack is very narrow in the ENF tests of these laminates and visual resolution

is much less than the actual extent of crack front propagation. Therefore, the technique

of painting side edges with white paint does not work accurately. X-Radiography of crack

surface was attempted. X-Ray opaque fluid solutions of Zinc Iodide, Barium Chloride and

Conray® were tried in varying concentrations. The capillary action does not seem to be

adequate to obtain good contrast. Variations in X-Ray intensity were also conducted using

the facilities at the University's Medical Center. Changes in the distance to the specimen,

soaking time for capillary action, X-Ray exposure times, and different photographic films

were tried without satisfactory results. The primary problem appears to be the inability

of the X-ray opaque dye to penetrate into the extremely narrow crack space. Ultrasonic

C-Scanning did reveal the crack length but, as we have seen in the preceding section, that

technique also measures less than the actual crack length. Future experimental work may

explore a more accurate method. However, physically cutting the specimens in small

incremental steps starting from the undamaged end confirmed that even the first stitch line

did not break although the crack had propagated at least up to about the center line of the

specimen.

The stitch yam contribution towards increasing Mode II fracture toughness and

the associated deformation mechanisms were investigated. It was observed during physical

cutting of the tested specimens that it is not possible to split open any of the specimens

and reveal the cracked surface specimens even though the C-Scan showed the crack front

had grown as much as half of its total length or more. The type of stitches used in this
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study generally did not break. The first one or two stitches, however, may have partially

broken. The crack front appears to have travelled around the stitch yarn. Due to the

uniweave architecture of the fabric there was no additional resistance except that of the

matrix and the glass fill yarn (2.5%) typically used in the uniweave cloth during fabric

manufacture. The stitch yarn "ploughed" through the matrix. To study this effect, the

specimens were gradually wedged open but the process of wedging damages the crack

surface by opening it in Mode I. However, a hint of the matrix deformation can be seen

in the SEM photograph (Fig. 3-15). The "ploughing" represents plastic or elastic-plastic

deformation of the matrix. This explains the similar fracture toughness increases by the

Kevlar-2790 and Glass-1250 which are close to each other in diameter. The Glass-750,

being the thicker yarn, gives a larger increase in fracture toughness for the 4xl/4" stitch

density. Thicker yarn more would greater deform of the matrix. Also the fracture

toughness increases with increasing stitch density (except for Glass-750) which indicates

increased matrix deformation. In the case of the 8xl/8" Glass-750, the fracture toughness

drops down compared to 4xl/4" Glass-750, this may be due to the high density of thick

yarns making the available matrix volume easier to "plough." This also indicates that

there is a possible optimum stitch density for the desired fracture toughness and design

loading requirements.
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Variation of Gu¢ with increase in crack length

The slope of the nonlinear part of the P-5 curve can be very useful in predicting

some of the material properties. This curve represents gradually changing compliance as

the crack length increases. Variation in G_,c as the crack propagates was investigated using

this part of the curve. Mode II fracture toughness at each data point of the acquired signal

was calculated using the energy area method (AW/AA). The AW is work done from the

P-c5 curve to propagate the crack length by a total increment of z_. The total increment

of propagated crack length is a_fy minus the initial starter crack length a o. The a_M at each

point was computed by using Equ. 4-2, where C" would be the nonlinear compliance at

that point. A typical variation of GHc with the crack length for all the stitch yarns used

in this study is shown in Fig. 4-5. The effect of stitching on Mode II fracture toughness

can be studied from this curve. Initially, there is very little effect of the stitches and the

value of Guc is about the same as that of an unstitched laminate. As the crack starts

propagating, more and more stitches start becoming effective in improving the fracture

toughness by "ploughing" the matrix thereby making the material system tougher. The

rate of increase in the GHc for all the 4xl/4" stitch density is less than 8xl/8" density

laminates. A sample calculation is given in Table C-4 in Appendix-C.

The variation of G_ic was also studied by calculating the AW for the two

successive load increments and dividing this incremental work done by the corresponding

incremental increase of AA between those two successive points. A typical curve for

Glass-750 is shown in Fig.4-6 and represents the instantaneous variation of GH_with crack

length.
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63



INSTANTANEOUS VARIATION of GIIc with CRACK LENGTH
(Stitched Laminates: Glass-750, 8xl/8")
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Figure 4-6: A typical variation of G.c at each time interval (instantaneous) with

increase in crack length of stitched laminates.
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Effect of friction on G.c

Tests were conducted in which the specimen was loaded well within the elastic

range and then unloaded. The test was repeated after applying lubricating oil between the

crack surface. The work done as calculated from the area under the curve represented

frictional losses at the support roller pins, loading pin and the initial crack surface with

or without lubrication. One typical response of such a test is shown in Fig. 4-7. The total

losses in this elastic range were calculated to be about 2-3%. This matches with results

reported earlier [26].

c

c
c

i

o s

Dm

_7

os

es

g4

0 ]

D

CRACK SURFACE FRICTION DURING ENF TEST

WithOut Lubrication

With Lubri¢811on

NOTE: BOTH CURVES ARE SUPERIMPOSING

o i i l i i i T

DISPLACEMENT (mm)

Figure 4-7: Effect of crack surface friction during the linear loading part of the test.
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The frictional losses in the nonlinear region can be high. This type of frictional

effect can be inferred from the P-_5 curve of the stitched laminates shown in Figs. 4-2 and

4-3. In most of the load-displacement curves a small but sudden drop in load can be

observed immediately on the commencement of the unloading cycle. It is believed that

this is due to contact friction at the point of maximum deflection and the support roller

pins. As this drop is observed only when the test is well into the nonlinear region its

affect can be ignored in the initial part of the test. However, for later regimes this load

drop will give a larger work done (area under the curve) during the test. Therefore, values

of GHc obtained from new methods should be reduced accordingly. On an average, a study

of 48 P-_5 curves in this study suggested a 20% reduction in the peak GHc values obtained

by the Equivalent area method which gives a conservative lower bound for G_¢ values.

The data regarding frictional effect of work done in the nonlinear regime is given in

Table C-5 in Appendix-C. It may be noted that the contribution of stitching to improve

Mode II fracture toughness still remains significant.
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CHAPTER- 5
STATIC INDENTATION-FLEXURE (SIF) AND COMPRESSION-AFTER-IMPACT

(CAI) TESTSOF PLAIN WEAVE LAMINATES

Approachto Studyof Impact DamageResistanceand DamageTolerance
of Thin Plain WeaveLaminates

The static indentation-flexure(SIF) test can be used to study impact damage

responsedueto impactof largemassesat very low velocities[6,27].Thesetestssimulate

quasi-static impact conditions. In addition, they offer greater opportunity to study

progressivedamagepropagationduringthe impactevent.Thesetestswereconductedon

unstitchedand stitched 16 ply plain weavegraphite fabric/epoxy (HerculesA193-P/

3501-6)laminates.Theprocessingof theplatesfor thespecimenswasdoneat Centerfor

Studiesof AdvancedStructuralComposites,University of Florida. The specimenswere

3.6 mm (0.140") nominally thick squareplates i.e., about half the thicknessof the

uniweavelaminatesstudiedinChapter-2.Theseweresimply supportedoncircularsupport

ringsof differentdiameters.Thespecimenswerestaticallyindentedandunloadedat three

different contactforce levels in orderto assessdamageprogression.Load-displacement

datawasgathered.Theeffectof stitchingon indentationdamageareafor a givencontact

force,damagepropagationandresidualcompressionstrengthwerestudied.UltrasonicC-

Scanswere takento assessdamagearea.The effect of varying supportring diameters

wasalsostudied.
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Processingof the Stitched Plain WeaveLaminates

A preformof 16plies[0_6] of 12"x12" sizeplain weavegraphitefabric (Hercules

A193-P)wasstitchedusing an industrialsewingmachine.An out-of-balancestitch lock

usingKevlar®29(1600denier)bobbin yam andKevlar®29(400 denier)needleyarnwas

used.This typeof stitch lock is similar to themodifiedstitch lock usedon the uniweave

laminatesbut the positionof the lock tendsto beslightly insideof thetop surfacerather

thanon the top of it. The stitchedpreformwassandwichedbetweentwo equalquantity

of film resin(3501-6)anda vacuumbag lay-upwaspreparedasshownin Fig. 5-1.The

lay-up was cured in an autoclavefollowing the manufacturer'srecommendedcuring

cycle.

Stitching the preform The speed of stitching has to be steadily maintained to achieve

consistent product quality. Variation in stitching speed leads to frequent

breaking/entanglement of stitch yams (needle or bobbin or both). This may lead to non-

continuous stitching in the laminates which may affect desired properties. Therefore,

stitching speed should be automatically controlled in the sewing machines designed for

composite preform stitching. Another problem area is the possibility of small and gradual

changes in bobbin or needle yam tensions during the stitching process. The tension is

adjusted by the operator before the start of stitching and should be checked frequently to

ensure it does not change. The tension setting determines the stitch lock position.

Deviation in stitch lock position will lead to varying stitch lock stress concentrations in

the laminate. Therefore, a suitable mechanism to ensure preset tensions do not change or
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Figure 5-1: Vacuum bag lay-up of stitched graphite preform and resin films used for

autoclave processing of the stitched laminates at the Center for Studies of Advanced

Structural Composites.
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sensors for any inadvertent changes in the preset tension need to be incorporated in the

sewing machines for composites manufacture. Nylon, Glass and Kevlar ® yarns were

considered for their suitability to stitch a 16 ply preform. Rounded stitching needle #160

was used in the machine to minimize damage to textile fabric warp and fill yarns. Nylon

and Kevlar yarns were found satisfactory for their stitchability while the Glass yarn was

observed to break frequently. Kevlar®29, the stronger of the two satisfactory yarns, was

selected for stitching the laminates. Two stitch densities for the plain weave specimens

studied were: 8xl/4" (= 32 stitches/in 2 ) and 5×1/4" (= 20 stitches/in2). A paper template

marked with the desired stitch pattern was used as a guide on top of the preform to assist

straight line movement of the preform between the dog and the feed as shown in Fig. 5-2.

The paper template was carefully removed after stitching using tweezers.

Vacuum bag lay up and autoclave curin__. The vacuum bag mold was cured

following the cycle shown in Fig. 5-3. Two equal stacks of film resin on either side of

the preform allow the infusion of the film resin during the curing cycle. The specimens

were ultrasonically C-Scanned for void content. About 25% percent of the production was

rejected due to high porosity. The volume fraction of fiber (V/) was 60%. The thickness

of the stitched and the unstitched composite plates were 0.140" and 0.135" respectively.

The cured 12"×12" composite plates were cut into different size square laminates using

a dressing machine with a diamond-impregnated cutting wheel.
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Static Indentation-Flexure (SIF) Test

Test variables and procedures

A one-half inch diameter hemispherical shaped steel indenter was used to indent

the simply supported plate specimens. A schematic diagram of the test set-up is shown

in Fig. 5-4. The support ring diameters selected for study were 2", 3" and 4". The

specimens were cut to ensure at least 0.5" overhang on all sides beyond the support ring.

The diameter/thickness ratio was 15 to 30 conforming to thin plate analysis assumptions.

A test matrix is shown in Table 5-1.

Table 5-1: Test Matrix of SIF and CAI Tests

STITCH

DENSITY

Zero (Unstitched)

TYPE OF TEST

SIF and CAI Test

8 x 1/4"

5 x 1/4"

SUPPORT RING

DIAMETER

# OF

SPECIMENS

2" 3 each

3" 3 each

4" 3 each

2" 3 each

3" 3 each

4" 3 each

11 12 each

The tests were conducted under stroke control on a 12 kips Tinius-Olsen machine

at a rate of 0.05 in/min. The load and indenter displacement were recorded using
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Figure 5-4: SIF test fixture and a schematic diagram of the test set-up
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a calibrated load cell and a LVDT respectively into the Nicolet digital oscilloscope 4094

with XF-44 recorder. The displacement of the specimen was measured using a separate

LVDT positioned at the bottom surface. The difference in both displacements gives the

indentation. As a first step, 8×1/4" specimens were loaded and unloaded within the linear

region of the P-8 curve. A few crackling sounds typical of matrix cracking could be heard

near the peak of the linear region. The damage was assessed using Ultrasonic C-Scan.

Subsequently, in the second and third steps, other specimens were loaded well into the

nonlinear region. The damaged specimens were C-Scanned to calculate damage areas.

Having studied the effect of variation in support ring diameter, the 5× 1/4" specimens were

tested similarly up to the same level in the nonlinear region of the P-8 curve for each

specimen using the 3" diameter ring only.

SIF Test Results and Discussions

Textile laminates vs. Unidirectional laminates

A representative P-_ curve for the unstitched and a 8×1/4" stitched laminate are

shown in Fig. 5-5 and Fig. 5-6 respectively. The onset of damage initiation in the case

of stitched textile composite laminates is not marked by a sudden and pronounced drop

in the load as happens in the case of an unstitched or a unidirectional laminate [6].

Instead, it is smooth and the damage progression in stitched textile laminates is similar

to yielding in ductile materials. A similar behavior was observed with rt/8 laminates [6].

74



v

t:)

g
...J

4

2

i

i°oo o5 lo ' 11_ 21o
INDENTER DISPLACEMENT (ram)

2.5

Figure 5-5: A typical P-_i curve for unstitched laminates.

X,"

t::3

g
_J

o
o.o

Figure 5-6: A typica] P-_5 curve for stitched laminates

75



Impact damage resistance of the thin unstitched and the stitched laminates as

characterized by impact force

A comparison of the low velocity impact damage response as simulated through

static indentation tests for the 8xl/4" stitched and the unstitched laminates at different

loading steps and with different support ring diameters can be seen in F'lgs. 5-7, 5-8 and

5-9. It is noted that there is no significant difference in the contact force required to

initiate damage in the stitched and unstitched plates which indicates that the stitching does

not affect this impact response in these plates. Apparently, the through-the-thickness

reinforcement does not become very effective in these cases. There is a slight increase

in the ultimate load in the stitched plates which could be due to the increased thickness

also. This insignificant affect of stitching on the impact damage resistance of thin

laminates is consistent with the findings of Poe, et al [28] who reported an increase in

improvement of the impact resistance of the stitched laminates as the thickness of

laminate was increased. An increase in support ring diameter decreased the maximum

failure load.
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Impact damage resistance of the unstitched and the stitched laminates as characterized

by impact damage area

The damage area is smaller for a given force for increasing support ring diameters

for both the unstitched and the 8×1/4" stitched laminates as seen in Fig. 5-10. However,

8x 1/4" stitching seems to not affect the impact damage area, only three specimens of each

type were tested. It was therefore decided to fabricate and test 12 of the 5xl/4" specimens

to get a more statistically reliable data. Loading/unloading levels were the same at each

step. Support ring diameter was also kept constant (3") for all these specimens. Fig. 5-11

shows impact damage area versus impact force for the unstitched and the 5×1/4" stitched

laminates. The stitched specimens demonstrated about 40% less damage area compared

to unstitched specimens for the same load. Thus, impact damage resistance improved

significantly due to stitching. Fig. 5-12 shows two representative C-scans taken to

measure damage area for the unstitched and the stitched laminates. Thus it can be inferred

that the damage initiation for the unstitched and the thin stitched laminates is likely to

occur at the same load, further propagation of the damage can be significantly restricted

by stitching.
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Figure 5-10: Impact Damage Area (C-Scan) vs. Contact Force for the unstitched and

8xl/4" stitched laminates with variation in support ring diameter.
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(a) UnstitchedSpecimen# USSI-15:C-Scan Damage Area = 629 mm 2

(b) Stitched Specimen #STSI-15: C-Scan Damage Area = 446 mm 2

Figure 5-12: C-Scans showing damage areas of the Unstitched and Stitched laminates

created by same indentation load.

82



Compression-After-ImpactTest

Test variables and procedures

The residual post-impact strength for the statically indented unstitched and stitched

textile laminates was characterized by measuring compressive failure strength. It may be

recalled that the SIF tests of the unstitched and 8xl/4" stitched laminates were conducted

on 2", 3" and 4" diameter support rings, and the 5xl/4" stitched laminates were conducted

on a 3" diameter support ring. Thus the plates that were indented on 2", 3" and 4"

diameter rings were 3", 4" and 5" tall respectively. The UF-CAI fixture (Appendix- A)

was used to conduct CAI tests. The tests were conducted in stroke control mode on a

calibrated 20 kips capacity hydraulic-powered MTS testing machine using a digital

controller (Type 455) and a dedicated computerized (PDP-I 1) remote control system at

the Center for Studies of Advanced Structural Composites. The total travel of the top

crosshead was programmed not to exceed the unsupported height of the specimen in the

fixture. The rate of loading was 0.02 mm/s. The compression failure was detected by

observing the sudden drop in the load signal and was read from the memory of the

control panel indicator. The failure was preceded by crackling sounds in quick succession

ending with a loud bang noise. The load signal was also recorded on the Nicolet digital

oscilloscope for later comparison and reference. The specimen loading was stopped

immediately after compressive failure occurred. The specimens were examined for the

type of failure.
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CAI test results and discussions

The residual compressive strength was calculated by using the peak load and

dividing it by the average cross-sectional area of the specimen. The average thickness was

calculated using thicknesses measured at ten points on the coupon. The failed specimens

were again C-scanned to study the progression of damage during the CAI test. The

reduced CAI load data and C-scans for all the specimens tested are given in Appendix-D.

The compressive strength is known to increase with a reduction in gage length

[22]. The 8xl/4" stitched specimens were primarily manufactured to study stitching,

processing and impact damage with varying support ring diameters (meaning different

gage lengths in a CAI test). Consequently, their numbers in each category were

insufficient to study the CAI data to observe the effect of stitching with other variables

remaining constant. Therefore, the effect of stitching for 5xl/4" stitched specimens (all

of them had the same gage length = 2.4") is presented. The residual post-impact strength

is plotted against the impact force in Fig. 5-13. The stitched specimens showed about

25% higher CAI strength than the unstitched laminates for the maximum damage area.

However, it should be noted that the CAI strength for low impact force are similar. This

trend is similar to the one observed in the Sublaminate Buckling Tests described in

Chapter-2, although the plain weave laminates were much thinner than the uniweave

laminates. The effect of stitch density was not studied in the plain weave laminates. The

CAI tested specimens were C-scanned to see progression of damage. A typical C-scan is

shown in Fig. 5-14. The damage invariably progressed on either side of the center line
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of impactdamagearea,the laminatebeingweakestin thoseregions.In the caseof the

control specimens,the failure occurredat the well known 450angleshearband at the

mid-section.

CAI STRENGTH of THIN PLAIN WEAVE LAMINATES
(Stitc hed Vs. Unstitc hed)
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Figure 5-13: Stitching improves the CAI strength of thin plain weave laminates by

about 25% for the maximum contact force applied.
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CHAPTER 6
CONCLUSIONS

Thesestudiesshowthat through-the-thicknessstitchingof textile graphite/epoxy

laminatessignificantly improveslow velocity impactdamageresistance,impactdamage

tolerance,ModeI fracturetoughnessandModeII fracturetoughness.Therefore,combined

with massproduction advantagesof the well establishedtextile technologies,stitched

textile structuralcompositesemergeasa potentially superioralternativematerialsystem

for highperformanceneedsat lowercosts.Salientobservationsmadeduring thestudyand

the conclusionsdrawn thereof are summarizedbelow. The chaptersfor referenceof

completedetailsarementionedagainsteachconclusion.

UniweaveLaminates
(AS4 uniweavefabric/3501-6resin/Kevlaror Glass stitched/RTMprocessed)

Effect of stitching on sublaminate buckling strength . . (Refer to Chapter-2 for details)

1. Stitching was observed to effectively restrict sublaminate buckling failure of

uniweave laminates with teflon implanted delaminations. The improvement in the

sublaminate buckling strength of stitched laminates with 8×1/8" stitch density was as high

as 400% compared to the unstitched laminates for the worst case of delamination studied.

2. The sublaminate buckling strength increases rapidly with increasing stitch
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density. It reachesa peak CAI strengththat is very closeto the original compression

strengthof the material. For the higheststitch density studiedi.e., 8xi/8", the CAI

strengthof the stitcheduniweavelaminatesfor theworst damagecasewasabout65 ksi

ascomparedto about70 ksi of the undamagedstitchedcontrol specimens.

3. The effectof thedifferent typesof stitch yarn is not noticeable.All the stitch

yarns investigated demonstrated very close performance in improving the CAI strength.

It appears that any stitch yarn with adequate breaking strength and stiffness successfully

restricts sublaminate buckling.

Effect on Mode I fracture toughness ............ (Refer to Chapter-3 for details)

1. Stitching increases the Mode I fracture toughness (G_c) increases by at least an

order of magnitude. In case of 4×1/4" stitch density, Kevlar-2790 (1600 denier) stitch

yarn increased G_c by about 15 times, Glass-1250 (3570 denier) by about 30 times and

Glass-750 (5952 denier) by about 21 times. The Mode I critical strain energy release rate

for the unstitched lamnates was 302.6 J/m 2.

2. The Mode I fracture toughness of 8×1/8" stitch density laminates could not be

measured experimentally as the specimen failed in bending before the crack could

propagate any distance. In order to find the G_c for these high stitch density laminates,

thicker specimens are required. This illustrates the impressive increase in Mode I fracture

toughness due to stitching.

3. The G_ increases rapidly with increasing crack length but stabilizes at a peak

value as the crack increments start following a self-similar pattern.The initial low value
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of Gjc for the first increment is probably due to manufacturing imperfections like

misalignment of the first stitch of each stitch row. A stabilized G_ value is observed

once the crack starts progressing in a self-similar manner.

4. The crack propagation in unstitched laminates is gradual and steady. The crack

propagation in the stitched laminates is intermittent and unsteady. The stitches first

debond from the matrix after the crack front passes ahead. The stitches always fail at or

near the stitch lock. The bobbin yarns failed with Kevlar-2790 and Glass-1250 stitch

yarns, the needle yarn failed with the stronger bobbin Glass-750 yarn. This indicates the

role a needle yarn may play in further improving G_. In general, both bobbin and needle

yarns may be of approximate equal strengths to avoid a weaker linkage.

5. The SEM studies of crack surface morphology hint at matrix "ploughing" by

the stitch yarn in a uniweave architecture.

Effect on Mode II fracture toughness ............ (Refer to Chapter-4 for details)

1. Stitching significantly improves Mode II fracture toughness. The increase in

apparent GHc was 5 to 15 times when the crack was allowed to propagate up to about

midspan of the ENF beams.

2. The crack surfaces do not open during the ENF test and hence it is difficult to

estimate the crack length by any method such as visual, X-radiography or Ultrasonic C-

Scan. The Ultrasonic C-Scan underestimates it. Two new methods to calculate apparent

G,c have been developed: one using work done from the P-5 curve and the C-Scan area

of the crack surface; the second method uses compliance of the unloading curve.
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3. The critical strain energy release rate increases with increasing crack length.

This is because not all energy imparted to the laminate goes directly to the crack front.

Part of it is used in stitch and other matrix failure mechanisms as more stitches become

effective as the crack propagates. The stitched laminate seems to behave more like a

structure rather than a material.

4. The stitches did not break during these tests. The stitch yarn seemed to plough

through the matrix causing elastic and elastic-plastic deformation. Therefore, as the crack

starts propagating, the ploughing resistance increased resulting in more Mode II fracture

toughness.

5.The effect of crack surface friction was found to be 2-3% on the GHc, while the

effect of support roller pins and loading pin contact friction should not be neglected when

the P-5 loading curve reaches well into nonlinear region.

Thin Plain Weave Laminates

(Hercules A193-P graphite fabric/3501-6 resin/Kevlar stitched/autoclave cured)

Observations on processing of stitched laminates ............. (Refer Chapter-5)

1. The location of stitch lock within the laminate is critical to all the properties

investigated in this study. This location is sensitive to stitching speed and bobbin and

needle tensions. To achieve consistent quality, automated speed control and a suitable

mechanism to ensure preset bobbin and needle tensions are considered essential.

2. Kevlar is easy to stitch with while the Glass yarn is not. Though the Mode I,

Mode II fracture toughness and CAI strength of Glass-1250 stitched laminates are slightly
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better than Kevlar-2790 stitched laminates, the additional care, time, and wastage due to

frequent breaking of Glass stitch yarns may offset the processing cost advantages that

textile structural composites offer.

Low Velocity Impact damage resistance and damage tolerance of thin Plain Weave

Laminates ................................. (Refer Chapter-5 for details)

1. Low velocity impact damage resistance was studied by conducting static

indentation tests. The damage progression during a static indentation test in stitched textile

laminates is similar to yielding in ductile materials. This is unlike most unstitched

laminates where a delamination initiates suddenly during a static indentation test.

2. In the case of the thin laminates, the force where delaminations initiated did not

change significantly. The impact damage area for the stitched laminates, however, was

about 40% less compared to that of the unstitched laminates. These results match well

with other studies where improvement in impact damage resistance increases with

increase in the thickness of laminates. It may be that through-the-thickness reinforcement

is not fully effective in thin laminates.The CAI strength of stitched laminates (5xl/4")

was about 25% higher than the unstitched laminates for the largest impact force but was

the same for the smaller impact force.
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APPENDIX - A

THE UNIVERSITY OF FLORIDA COMPRESSION-AFTER-IMPACT (UF-CAI)

TEST FIXTURE AND SUBLAMINATE BUCKLING TEST DATA

The UF-CAI Test Fixture

Limitations of existing CAI test fixtures

A study to select a suitable CAI fixture that will allow specimens of 3", 4" and

5" height to be tested was made. It is to be noted that the static indentation-flexure (SIF)

tests on the thin plain weave laminates described in Chapter 5 were planned on 2", 3" and

4" diameter support rings. Thus the plates that were indented on 2" diameter support ring

were 3" tall (0.5" overhang was allowed on all sides during the SIF test) and the plates

that were indented on 3" and 4" support ring diameters were 4" and 5" tall respectively.

The Center for Studies of Advanced Composites has an existing NASA post impact

compression fatigue test fixture shown in Fig. A-1 [29]. Preliminary tests with this

fixture revealed that the test fixture was not suitable to meet the requirements of this

program for two reasons: the height of specimen is fixed, and global buckling is

prevented by knife-edge supports. The knife-edge supports tend to cut into the side cdges

of the specimen which may fail from the cut area.

A study of a variety of existing CAI fixtures including NASA linear bearing

fixture, ASTM, Celanese, IITRI, Wyoming modified IITRI and ELSS, Short block
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compression, UDRI and Boeing was carried out. Though a few of these fixtures could be

used for the purposes of this program with little modifications, the existing NASA post

impact compressive fatigue test fixture was modified for reasons of economy as well as

to adequately meet the specific design considerations listed below. During the course of

development this fixture has undergone extensive fundamental changes and has been

christened the "UF-CAI Test Fixture". Top and bottom platens along with the top and

bottom side support plates of the existing fixture are interchangeable with the new UF-

CAI fixture.

Section A-A

Specimen

Impact Site

A

Knife Edge
Suppo_s

ion

0

Figure A-I: Existing NASA post impact compressive fatigue test fixture [29]
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Design considerations for the UF-CAI Test Fixture

The following were considered during the development of the UF-CAI test fixture;

1. It should be compatible with test specimens of different heights of 3", 4" & 5" and

be flexible enough to test taller specimens with necessary modifications later.

2. It must not constrain the damage progression in any way during the compression

test.

3. It should uniformly apply compressive end loading, and be easily aligned with

load axis.

4. It should be able compatible with laminates of any thickness.

5. It should give repeatable results.

A schematic diagram of the UF-CAI test fixture is shown in Fig. 2-1, Chapter 2.

Two photographs showing an isometric view and an end view with a graphite/epoxy

specimen of 5" height are shown in Fig. A-2.

(a) (b)

Figure A-2: Photographs of the UF-CAI test fixture with 5" tall specimen

(a). Assembled isometric view (b). End view
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Basic construction and operation of the UF-CAI test fixture

The UF-CAI fixture uses two L-shaped steel brackets to support the specimen

from top and bottom side surfaces. The L-shaped brackets are secured in the bottom plate

with 3 bolts each during the test. The L-shaped brackets have window-cutouts that allow

the damage progression without any constrains. The shape and markings on the brackets

allow quick and accurate alignment. The specimen is end loaded and side-supported. The

brackets also prevent global buckling. In addition, two anti-buckling plates of different

heights in conjunction with a matching bottom distance piece are used to allow testing

of different heights of specimens. The anti-buckling plates also have corresponding

window cutouts. The openings of the window cut-outs are also used for back-to-back

strain gage mounting and for observing the nature of failure during the test.

Fabrication

A drawing of the UF-CAI Fixture is shown in Fig. A-3. The top and bottom

platens and the side support plates have been used from the existing NASA fixture.

Unsupported height of the specimen is 0.2" to permit end shortening of specimen..

Aluminum alloy and hot-rolled low carbon steel angle plates of different sizes and

different window cutouts were investigated for the prototype development. The steel one

was finally adopted after experimental validation of test results. The total weight of the

fixture is 12 lbs.
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L Shaped Brackets

k Bottom Crosshead Plat ten

Note drawing not to scale

Figure A-3: Key dimensions of the UIe-CA[ Lest fixture shown for a 5" tall specimen
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Validation of the UF-CAI test fixture

Compression tests were conducted on 12 three-dimensional braided graphite/epoxy

composite laminates to compare the performance of UF-CAI fixture with available

compressive failure strength data in the literature [30]. It was found that the UF-CAI

fixture gave results within 10% of the values cited in the literature. The fixture was used

for Sublaminate Buckling Tests on 131 specimens as described in Chapter-2, the results

again being consistent with the compressive strength data in [22]. The fixture also met

other design considerations satisfactorily.

Advantages and limitations of the UF-CAI fixture

1. The impact damage area is allowed to grow without constraints due to the window

cutouts in the L-shaped brackets and the anti-buckling plates. This is considered better

than the knife-edge supports which tend to pinch the specimen during buckling. This

design seems to work well for materials of moderate strength e.g., composites of up to

about 100 ksi strength. For higher strength materials it may be strengthened with thicker

anti-buckling plates.

2. It allows three different heights of specimens for testing. Any other size of anti-

buckling plates can be added to the fixture to adapt it to another specimen height.

However, a NASA linear bearing fixture may be more suitable if the gage lengths are

more than 4" or 5".

3. This fixture was found suitable for thin as well as thick plates, was easy to align

and light weight for easy handling.
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Detailed CAI Strength Test Data of Sublaminate Buckling Test

Table A-l: Compression strength data for the unstitched laminates (Plate #37)

Specimen

(Label)

P37S1

P37S2

P37_3

Height
(inch)

PLATE #37
_Thickness Width PeakLoad Av Str.

(mm)

7

6.95

6.95

(mm)

38.7

Gage

!Length

5 2.9

5 2.9
5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

4 2.4

4 2.4

4 2.4

4 2.4

4 2.4

4 2.4

4 2.4

4 2.4
4 2.4

38.6

38.85

(Ibs)

27072i
25800

26791

Strength

(Ksi)

64.47
62.05

64.01

(Ksi)

63.51

37.8

Damage

Type

No

Dama.qe

P37S40 6.6 38.05 14746 37.88

P37S41 6.6 38.05 15231 39.13 38.27 #2

P37S42 6.6 38.1 14734

38.75 78.73

P37S80 6.8 38.3 5100 12.63

P37S81 6.75 38.5 5500 13.65 13.27 #4
P37S82 6.8 38.6 5500 13.52

P37S4 6.9 32629

35748 84.9238.8 80.92 NoP37S5

P37S6 6.9 38.65 32700 79.11 Damage

P37S20 6.65 38 31888 81.41

P37S21 6.75 37.9 29239 73.74 76.361 #1
P37S22 6.7 37.85

P37S60 6.55 38
P37S61 38.05

39.9

6.6 ¸

73.9229056

15179 39.35
15552

194066.85

41.71
P37S62

39.95

45.8
#3

99



Table A-2: Compression strength data for Kevlar-2790, 4x1/4" stitched laminates

(Plate #31)

Specimen

(Label)

P31S1

P31 S2

P31S3

Height

(inch)

PLATE #31 I

Gage

Length

Thickness

(mm)

6.8

Width

(mm)

39.25

39.05

39.05

Peak Loa_

(Ibs)

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

5 2.9

4 2.4

4 2.4

4 2.4

4 2.4

4 2.4=

4 2.4

4 2.4

4 2.4 i

4 2.4

26260

27496

25586i

Strength
(Ksi)

63.47659

64.89599

Av Str. I Damage

(Ksi) {Type

6.9 61.2632

!
P31S40 6.95 39 20105 47.85442 r
P31S41 7.05 39 19015144.61799 47.17918) #2

P31S42 20288 49.2O67938

63.14872,, j No

I Damage

P31S80 6.85 39 13031i 31.46951 [

38.9 132201 31.32213P31S81 71 28.920021 #4

P31S82 7.05 39.1 10278 24.05527

P31S4 6.85 39.1 30426 73.29004 I

P31S5 6.85 38.8 30563! 74.18927 72.88039INo

P31 $6 6.8 41.2 30997 71.38073 I Damage
I

P31S20 71 39.1 30298 71.41782 I

P31S21/2:
P31S22

69.031612857216.91 38.7

39.15

71.28318J #1

30823 73.61418

P31S63 38.9 185611 44.29293 I
173341

18753

41.06942

44.57921

6.9

6.95

P31 S64
6.9_ 38.939.05P31S65

43.270541

I
#3
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Table A-3: Compression strength data for the Kevlar-2790, 8×1/8" stttched laminates

(Plate #32)

Specimen

(Label)

Height

(inch)

PLATE #32 f
PeakLoadGage

Length

Thicknes_

(mm)

Width

(mm) (Ibs)

Strength

(Ksi)

P32S1 7.25 37.5 28769 68.2689

7.25

7.2

P32S2

P32S3

37.25 25714

5 2.9

5 2.9

5 2.9 37.4 24518

P32S40 I 51 2.9

AvStr. PDamage

(Ksi) IType

61.42891 62.750441No

58.741951

56.5171917.3 37.5 23981

P32S41 I 51 2.9 7.3 37.5 24524 57.79691157.961711 #2

P32S42 I 51 2.9 7.25 37.5 25177 59.74508 i

7.3

7.3

7.15

"1.15

72
712

i
P32S80 I 5 2.9
P32S81 I 5t 2.9

5 2.9P32S82 I

I
P32S4 I 4 2.4

37.6 23386

37.75 22748

37.85 23148

37.1 28186

37.4 29187

37 28680

37.95 29083

37.9 30829

P32S5 ( 4 2.4

P32S6 [ 4 2.4

P32S20 I 41 2.4

P32S21 i 4I 2.4
41 2.4

54.968351

53.25628

55.18347

68.55213

69.928271

69.456411

66.81333

72.38518

67.37699P32S22 7.25 37.9 28696

I
P32S63/6 t 4 2.4 7.3 37.6 26556 62.41937
P32S64/6J 4i 2.4 7.25 37.65 26120

P32S65 ! 41 2.4 J 7.3

61.73588

71.37526137.7 30447

Damage

[

54.4149 #4'

i
69.24296!No

,Damage

68.78964 #1

65.11166 #3
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Table A-4: Compression strength data for the Glass-1250, 4xl/4" stitched laminates

(Plate #33)

Specimen

(Label)

P33S1

P33S2

P33S3

P33S40 I
P33S41 I

Height Gag e

(inch) Length

PLATE #33

Thickness Width Av Str.

51 2.9

. 2.92.9

I
5i 2.91
51 2.9i

(mm)

6.8
6.9

6.9

7.1

(mm)

36.9

39.4

39.2

39.25
39.41

Dam.qe

(Ksi) Type

63.41362 No

i Damafe

48.05161 #27.05

P33S42 I 51 2.91 7.1 39.551 1

P33S80 51 2.91 6.9 39.05 I

P33S81 51 2.91 6.95 38.8 33.34251 #4

P33S82 5 2.9!

P33S4 t

38.916.9

6.95 39.4

P33S5 4t 2.41 6.9 39.51 75.04288 ! No

6.9 39.5

Peak Loa{ Stren.qth

(Ibs) (Ks 0

24997 64.27174

26645 63.23213

26382 62.92743

23434 54.25201

19482 45.24969

19498 44.79738

13889 33.25587

13574 32.47572

14310 34.39603

315431 74.31721

30746 72.77963

33060 78.25716

I
4 2.41P33S6

I I
P33S20 41 2.41 7.05 39.2 29929169.86899

7 36.55i

7 39.6

7 39.05 _

41 2.4lP33S21

P33S22 4! 2.4

t 4P33s60 I 2.4
4i 2.4P33S61 I 39.3

39.1P33S63

25958}65.45657

30017 69.86208

20374148.08666

21936 51.0791
18506 43.9357941 2.4

7.05

6.95

I Dama.qe

68.327481

47.65282_

#1

#3
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Table A-5: Compression strength data for the Glass-1250, 8xl/8" stitched laminates

Specimenl

(Label)

Hei.qht

(inch)

PLATE #34

Thicknes._ Width Peak Loa_Gage

Length (mm) (ram) (Ibs)
Stren.qth
(Ksi)

Av Str.

(Ksi)

Damage

Type

P34S1 5 2.9 7.2 37.15 24826 59.88015
P34S2 5 2.9 7.35 38.9 28287 63.8289 62.29714 No

P34S3 5 2.9 7.35 38.7 27939 63.36946 Damage

P34S40 5 2.9 7.3 34.5 25195 64.54162

P34S41 5 2.9 7.45 37.5 26385 60.93082 62.61404 #2

P34S42 5 2.9 7.3 38 26898 62.55773

P34S80 5 2.9' 7.35 38.8 25656 58.04132

P34S81 5 2.9 7.45 34 24414 62.18293 62.14375 #4
P34S82 5 2.9 7.4 34.5 26273 66.39361

P34S4 4 2.4 7.2 39.25 30035 68.56823

P34S5 4 2.4 7.2 34.7 27573 71.20156 69.71764 No

P34S6 4 2.4 7.2! 38.85 30173 69.59249 Damage

P34S20 4 2.4 7.25 39.7 27554 61.76232

P34S21 4 2.4 7.35 39.85 26196 57.70145 60.50514 #1

P34S22 4 2.4 7.45 39 28027 62.23335

P34S60 4 2.4 7.35 36.1 26205 63.71725
P34S61 4 2.4 7.5 38.75 29050 64.48825 62.22356 #3

P34S63 4 2.4 7.35; 39.05 26093 58.65203
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Table A-6: Compression strength data for Glass-750, 4×1/4" stitched laminates

(Plate #35)

Specimen
(Label)

P3551

Height
(inch)

PLATE

Gage
Length

Width i Peak Loac

(mm) (Ibs)
Strength
(Ksi)

Av Str.

(Ksi)

Damage

Type

5 2.9 40.75 2949_ 67.66981

P3552 5 2.9 38.8 25375 61.14947 64.40964iNo

P3553 51 39.4 ..... 0 Damage

P35S40

P35541

P35542

P35580

51
51
5

5

4

P35581

P35582

38.9

39.3

#35
Thickness

(mm)

6.9

6.9

2.9 6.85

2.9 6.9

2.9 6.9

2.9 6.9

2.9 6.85

2.9 6.9

2.9 6.95

2.4 6.85

2.4 6.85

2.4 6.85

2.4 6.9
2.4 6.9
2.41 6.9

I
2.4 6.85

2.4 6.9

2.4 6.95

39.2

39.15
39.2

39.2

38.5

38.8

38.5

20218 48.59672!

19922 47.39786

20056 47.83839

16208; 38.99191

12988! 30.97951
135681

29538

30692

30273

P3554

275701

32.13012

72.25988

74.50241

74.05793

P3555

P3556

47.896381

33.99981

73.53313 No

P35520

44.74355

#2

#4

Damage

4 37.95 67.92714

P35S21 4 38.2 27045 66.19756 66.5844 #1
P35522 4 38.15 26859 65.82845

P35560 4J 38.1 18100

38.6 18381

38.5 198944;

45.6993644.52462

47.96716

P35S61

P35563
#3
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Table A-7: Compression strength data for Glass-750, 8×1/8" stitched laminates

(Plate #36)

Specimen

(Label)

P36S1

P36S2

P36S3

P36S40

P36S41
P36S42

P36S80
P36S81

Heiqht

(inch)

P36S4

PLATE #36
Thickness Width Peak Loa_Ga,qe

Len,qth (mm)

7.3

7.3

7.2

7.4
7.45

7.45

7.4
7.4

5 2.9

5 2.9

5 2.9

5 2.9
5 2.9

5 2.9

5 2.9

5 2.9
5 2.9

4 2.4

4 2.4

4 2,4

4 2.4

4 2.4
4 2.4

4 2.4

4 2.4
4 2.4

(mm)

39.1

39.15

38,75

39.85
39.1

38.8

38.9
39.15

(Ibs)

26898

31293

28421

26584
24274

27542

24673
26794

Str.enflth

(Ksi)

60.79779

70.64152

65.72076

1.58.16044
53.76204

39.1

61.47166

55.29783
59.668

P36S82 7.5 39.05 27893 61.44412

7.4 32813

367.1
39.25J7.25

7,45
7.5

7.45

7.35

27911P36S5

P36S6

P36S20

31400

24567
24442

30911

39.1

P36S21
P36S22

P36S60

P36S61
P36S63

39.1

39.2

38 15

39.3

73.16526

70.45016

71.19007

54.41098

53.77323

68.28702

Av Str.

(Ksi)

65.6543

57.74025

58.74451

71.53023

58.76492

Dama.qe

Type

No

Dama,qe

#2

#4

No

Damage

#1

7.4 21735 49.67076
7.5 39.151 25641 56.33903 57.24064 #3

29498 65.88402
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APPENDIX B

MODE I FRACTURE TOUGHNESS TEST DATA

Table B-l: DCB test data and G_c for unstitched laminates (Plate #30)

Specimen

Type & #

P30S13

Unstitched

P30S 14

Unstitched

Width

w(mm)

25.7

25.02

P30S15 24.75

Unstitched

I

DCB Test IStarter Crack

# 3rack(a0) Incre(mm}

P30S13-1 Nominal Invalid

P30s13-2 2.0" Invalid

P30S 13-3 Invalid

P30S13-4 9.5

P30S13-5 13

P30S13-6 181

P30S14-1 Nominal Invalid

P30S14-2 2.0" 17

P30S14-3 20.5

P30S15-1 qominal 20.25

P30s15-2 1.0" 12

P30S15-3 10.55

P30S15-4 12.95

P30S15-5 13.15

P30S15-6 Invalid

Vork Don

W(N.mm)

71.54

102.52

120.81

115.7

170.52

140.47

112.85

76.37

96.48

99.72

I
Area GIc Crack 'Type of

A(mrr_2) l Jlrna2 Length Hinge

244.15 293.0166 9.5

334.1 306.8542 22.5

462.6 261.1543 40.5

425.34 272.0177 17

512.91 332.456 37.5J

1 I

;Single

1 =

Single

501.1875 280.2743 20.25 1"

297 379.9663 3225 Single
261.1125 292.4793 42.8

320.5125 301.0179 55.75

_325.4625 306.3947

Overall

Average
GIc=

302.63
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Table B-2: DCB test data for Kevlar-2790, 4xl/4" stitched laminates (P!ai:e #24)

Specimen Width

Type & #

P24S13

Stitched

Kevlar

4x1/4"

P24S14

Stitched

Kevlar

4xl/4"

P24S15

Stitched

Kevlar

4x1/4"

P24S16

Stitched

Kevlar

4xl/4"

P24S17

Stitched
Kevlar

4xl/4"

DCB Test -3tarter Crack VorkDon¢} Area Gic Crack Type of

w(mm) # 3rack(a0) Incre(mm] W(N.mm)A(mrnA2) J/m,_2 ;Length Hinges

26.16 _24S13-1 Nominal Invalid LVDT 1"
2.0" bottoms Single

out

25.65 P24S14-1 _lominal 6.5 268.5 166.725 1610.436 1'

P24S14-2 2.0" Invalid LVDT Single
bottoms

out

25.75 P24S15-1 Nominal 13.95 239.53 359.2125 666.8198 13.95 1"

P24S15-2 1.0" 11.5 891.25 296.125 3009.709 25.45 Single

P24S15-3 Invalid

P24S15-4 13.5 2032.38 347.63 5846.47 52

P24S15-5 Invalid

9.65 672.48 I 266.34 2524.893 2"

11.15 1493.33 307.74 4852.57 Double

Invalid -hinge

11 740.289 303.6 2438.37 overlaps

11.5 818.272 317.4 2578.047 crack
Overall

13.925 1551 4283.94 13.925 2" :Average

12.54 1681.46 5157.2 26.465 Double {GIG=

Invalid -One end 4563.81

Invalid trimmed

9.1 1069.97 4522.27 58.665

27.6 P24S16-1 Nominal

P24S16-2 1.0"

P24S16-3

P24S16-4

P24S16-5

26 P24S17-1 Nominal

P24S17-2 1.0"

P24S17-3

P24S17.4

P24S17-5

P24S18
Stitched

Kevlar

4x1/4"

24.4 P24S18-1 Nominal 12.05 1330.75 294.02 4526.05 12.05 2"
P24S18-21 1.0" 34.65 3889.98 845.46 4601.02 46.7 Double

P24S18-3 Invalid -One end
trimmed

For Graph of GIc & crack

3009.709 25.5
5846.47 52

length

4283.94 13.925

5157.2 26.465

4522.27 58.6651

4526.05 12.05

4601.02 46.7

108



Table B-3: DCB test data for Kevlar-2790, 8x1/8" stitched laminates (Plate #25)

Note: The G]c could not be computed as the specimens failed in bending.

Specimen 'Width DCB Test Starter Crack Work Don Area GIIc

Type & # w(mm) # Crack(aO 1 Incre(mm) W(N.mm) A(mrr_2) J/rr_2

P25S13 26 P25S13-1 Nominal Invalid Hinge
Stitched 2.0 ° bond
Kevlar failed

8xl/8"

P25S14 27.6 P25S14-1 Nominal Invalid Hinge
Stitched 1.0" bond

Kevlar failed

8xl/8"

P25S15 27.55 P25S15-1 Nominal 13 Bond

Stitched 1.0" failed

Kevlar

8xl/8"

P25S16 24.95 P25S16-1 Nominal

Stitched 1.0"

Kevlar

8x1/8"

9.75 bottom

sub-

-laminate

failed

In

bending

(750N)

Integral
machined

hinge
failed

due to

clevis

fouling
with

hinge

Type of

Hinges

1"

Single

2 m

Double
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Table B-4: DCB test data for Glass-1250, 4×1/4" stitched laminates (Plate #26)

Specimen Nidth

Type & #

P26S13

Stitched

Glass

(1250)

4xl/4'

P26S14

Stitched

Glass

(I250)
4x I/4"

P26S15

Slitched

Glass

(1250)
4x1/4"

P26S16

Stitched

Glass

(1250)
4x1/4"

DCB Test Starter Crack _'ork Don i Area GIIc ;Crack Type ot

w(mm) # Crack(aO) Incre(mm) W(N.mm) A(mrr_2) J/trY2 Length Hinges
, , t

25.7 P25S13-1 klominal Invalid Hinge 1" Hinge

2.0" bond

failed

27.6 P26S14-1 Nominal 0 Invalid

P26S14-2 1.0" 8.675 2016.1 239.43 3420.415 11.825 2"

P26S14-3 11.425 3324.36 315.33 10542.48 23.25 Double

P26S14-4 11,325 2199.6 312.57 ,7037.144 34.575 -One end

P26S14-5 14.5 Invalid cut

P26S14-6 12,9 Invalid

25 P26S15-11Nominal 12.75 2982.97 318.75 9358.34 12,75

P26S15-2 1.0" 101 2842.8 250 11370 22.75
P26S15-31 10.05! 558.68 nvalid

P26S15-4 13.9 1222.06 Invalid

P26S15-5 11.2 1888.14 280 6743.36 57.9

13.7

25,8

25.1 P26S16-1 Nominal 13.7 3428.4 343.87 9970

P26S16-2 1.0" 12,1 2883.09 303.71 9492.9

P26S16-3 Invalid

For_raph of GIc
8420.42 8.675

10542.5 20.1

7037.2 31.4

9358.3 12.75

11370 22.75

10364 57.9

9970 13.7

9492.9 25,8

VS. a

Dverall

_verage
31c=

9121.33

110



Table B-5: DCB testdatafor Glass-1250,8xl/8" stitchedlaminates(Plate#27)

Note: The Gt¢ could not be computed as the specimens failed in bending during
the test.

Specimen

Type & #

P27S13

Stitched

Glass

(1250)
8x1/8"

P27S14

Stitched

Glass

(125o)
8x1/8"

P27S15

Width DCB Test Starter Crack NorkDonc

w(mm) # Crack(a0) Incre(mm) W(N.mm)

27.25 P27S13-1 qominal Invalid Hinge
2.0" bond

failed

27.5 P27S14-' Nominal Invalid Hinge
1.0" bond

failed

specimen failed Integral

due to bending '_inge
vorks

Area I Gllc

A(mrnA2) J/rr_2

Type of

Hinges

1 I

Single

2 =

Double
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Table B-6: DCB test data for Glass-750, 4x1/4" stitched laminates (Plate #28)

Specimen Width Z)CB Test Starter Crack Work Don Area GIIc Type of

Type & # w(mm) # Crack(a0) Incre(mm) W(N.mm) A(mrnA2) J/rnA2 Hinges

P28S13 25.3 P25S13-1 Nominal Invalid Hinge 1" Hinge
Stitched 2.0" bond
Glass failed

(750)
4x1/4 °

P28S14 27.65 P28S14-1 Nominal 15.25 1348.2 421.6625 3197.36 15.25

Stitched P28S14-2 1.0" 12.23 Invalid

Glass P28S14-3 10.15 2064.29 280.6475 7355.455 37.63

(750) P28S14-4 9.75 2116.15 269.5875 7849.585 47.38

4x1/4" P28S14-5 18.825 4102.81 520.5113 7882.27 66.21

P28S15 24.8 P28S15-1 Nominal 10.38 1432.18 257.424 5563.5 10.38

Stitched P28S15-2 1.0" 13.08 2524.72 324.384 7783.12 23.46

Glass P28S15-3 11.65 2249.94 288.92 7787.41 35.11

(750) P28S15-4 14.35 1981.18 355.88 5566.99 49.46
4xl/4" P28S15-5 14.05 2110.09 348.44 6055.83 63.51

P28S16 24.8 P28S16-1 Nominal 4.2 363.266 104.16 3487.58 4.21

Slitched P2BS16-2 1.0" 14.7 2573.76 364.56 7059.9 18.9 I

Glass P28S16-3 15.8 2729.2 391.84 6965.08 34.7!

(750)

4xl/4"

'For graph 3197.36 15.25
_of GIc 7355.454 37.63

and a 7849.585 47.38

7882.269 66.21

5563.5 10.38

7783.12 23.46

7767.41 35.11

5566.99 49.46

6055.83 63.51

3487.58 4.2

7059.9 18.S
6965.08 34.7

2 =

Double

-One end

trimmed

2 =

Double

-One end

trimmed

2 =

Double

-One end

trimmed

Overall '

Average
GIc=

6379.507
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Table B-7: DCB testdatafor Glass-750,8xl/8" stitchedlaminates(Plate#29)
Note: "l_he G_c could not be computed as the specimens failed in bending.

Specimen

Type & #

P29S 13

Stitched

Glass

(750)
8x1/8"

P29S14

Stitched

Glass

(750)
8x1/8'

P29S15

StRched

Glass

8xt/8"

Width DCB Test Starter Crack Work Don Area GIIc

w(mm) # Crack(aO) Incre(mm} W(N,mm)A(mrnA2) J/frO2

25.,5 P27S13-1 Nominal 10.5 287.22 267.75 1072.717

P29S14-2 2.0" Invalid Hinge
bond

failed

27._ P27S14-I qominal !Invalid Hinge
1.0" bond

failed

Specimen failed

due to bending

Type of

Hinges

1:
Single

2 m

Single
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APPENDIX C

MODE II FRACTURE TOUGHNESS TEST DATA

AND SAMPLE CALCULATIONS

-The critical mode II strain energy release rate (Gnc) was calculated using Beam

theory formula and the two new methods presented in Chapter-4. The ENF test data,

measured C-Scan areas, calculated values of the compliance and the a,M along with the

GHc values are shown in Tables C-I, C-2 and C-3 for the Beam Theory formula method,

Area method using C-Scan and the Equivalent Area method using compliance of the

unloading curve respectively. These tables can be treated as one large table in a

spreadsheet for using data from one table to another. Here, these are given in three

separate tables for sake of easy presentation. The specimen label numbers are same for

all the three tables and are listed in the first column of the Table C- 1. The specimen label

describes the Plate # and the Specimen # of that plate e.g., P24S4 means specimen #4 of

the plate #24.The other nomenclature applicable to these tables is as follows:

a

L =

W =

P1 =

GIII =

W =

initial starter crack length

half length of the specimen

width of the specimen

linear peak load observed during the ENF loading cycle

critical strain energy release rate using Beam theory formula

work done calculated from the area under the P- curve
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al =

A =

GII2 =

C' =

a2(eff)=

GII3 =

a+a' where a' is the propagated crack length from C-Scan

new crack surface area measured from C-Scan

critical strain energy release rate from Area method using C-Scan

compliance of the unloading curve measured at about 500 N load

effective crack length (a,M) calculated as explained in Chapter-4 for

a2<L

same as a2(eff) for a2>L

al-a2' (to compare the C-Scan crack length with the calculated

crack length)

critical strain energy release rate from Equivalent Area method

using compliance of the unloading curve. Average values of the

G,c for valid specimens are listed in the last column of Table C-3.
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Table C-l: Critical strain energy release rate (G.¢) using beam theory formula

Specimen a L w PI C GIll

# mm mm mm newton mnYN J/rr_2

P30S4 27.3 50.8 25.71 721.66 0.00303 636.8379

P30S5 27.3 50.8 25.81 729.47 0.00294 628.9227

P30S6 27.3 50.8 25.92 736.06 0.00313 678.8266

P30S7 27.3 50.8 26.54 751.72 0.00313 691.4786

P30S8 27.3 50.8 26.31 749.49 0.00307 680.0993

P30S9 27.3 50.8 25.65 727.25 0.00319 682.4862

P30S10 27.3 50.8 25.91 771.73 0.00292 696.4169

P24S4 27.3 50.8 26,67 910 0.00298 960.0616

P24S5 27.3 50.8 26.52 865 0.003 878.2194

P24S6 27.3 50.8 25.8 850 0.00294 854.257

P24S7 27.3 50.8 25.27 850 , 0.00288 854.3743

P24S8 27.3 50.8 25.27 880 !0.00302 960.2629

P24S9 27.3 50.8 25.78 825 0.00297 813.588

P25S1 27.3 50.8 25.48 1081.5 0.00292 1390.784

P25S2 27.3 50.8 26.67 1114.58 0.00293 1416.088

P25S3 27.3 50.8 26.54 ;1104.16 0.00256 1220.186

P25S4 27.3 50.8 26.34 1083.3 0.0026 1201.927

P25S5 27.3 50.8 27.25 1145.83 0.00244 1219.795

P25S6 27.3 50.8 27.31 1166.67 0.00231 1194.564

P26S1 27.3 50.8 26.87 681.25 0.00296 530.4692

P26S2 27.3 50.8 26.54 675 0.00297 529.0371

P26S3 27.3 50.8 26.16 631.25 0.00332 524.7183

P26S4 27.3 50.8 26.03 687.5 0.00291 548.261

P26S5 27.3 50.8 25,14 685 0.00303 586.7885

P25S6 27.3 50.8 27.43 675 0.00293 504.978

P27S1 27.3 50.8 26.85 725 0.00254 515.9273

P27S2 27.3 50.8 26.8 718.75 0.00278 556.0179

P27S3 27.3 50.8 26.5 793.75 0.00252 621.649

P27S4 27.3 50.8 25.9 675 0,00233 425.2916
P27S5 27.3 50.8 26.75 775 0.00237 552.1423

P27S6 27.3 50.8 25.5 675 0.0028 519.097

P28S1 27.3 50.8 27.25 800 0.0025 609.2234

P28S2 27.3 50.8 25.85 781.25 0.00286 700.6621

P28S3 27.3 50.8 25.1 768,75 0.00284 693.8059

P28S4 27.3 50.8 26 820 0.00253 678.8877

P28S5 27.3 50.8 26.6 712.5 0.00267 528.716

P28S6 27.3 50.8 25.95 800 0.00267 583.2458

P29S1 27.3 50.8 25.55 775 0,00267 651.2487

P29S2 27.3 50.8 26.25 732.5 0.00306 648.9787

P29S3 27.3 50.8 26.1 800 0.00278 707,306

P29S4 27.3 50.8 26.1 716.25 0.00299 609.7938

P29S5 27.3 50.8 26.3 760 0.00276 628.9319

P29S6 27.3 50.8 26.2 730 0.00276 582.4741
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Table C-2: Critical strainenergyreleaserate(GHc)from areamethodusingC-Scan

Specimen W al A GII2

# N.mm mm mrT_2 J/rnA2

a+a' wxa' W/A

P30S4 718.07 51.82 630.4092 1139.054

P30S5 379.35 51.8t 632.6031 599.6651

P30S8 370.69 52.06 641.7792 577.5974

P30S7 373.92 51.81 650.4954 574.8234

P30S8 410.07 52.06 651.4356 629.4866

P30S9 402.77 53.72 677.673 594.3427

P30S10 391.21 52.7 658.114 594.4411

P24$4 413.4 38.03228 286.23 1444.293

P24S5 1574.71 ' 56.52285 774.99 2031.91

P24S6 4577.19 64.25775 953.51 4800.359

P24S7 388.52 Invalid _hotomicr Invalid

P24S8 2452.02 Invalid Photomicr Invalid

P24S9 4568.37 nvalid Photomicr, nvalid

P25S1 3494.26 41.87285 371.3162 9410.47

P25S2 3694.41 40.94255 363.8469 10153.75

P25S3 3431.45 39.7285 329.8524 10402.99
P25S4 2927.17 38.34133 290.8286 10064.93

P25S5 2929.7 39.13368 322.4678 9085.249

P25S6 2081.44 Invalid No C-Scazlnvalid

P26S1 2141.17 45.36906 485.5156 4410.095

P26S2 2956.26 52.5296 669.5937 4415.006
P26S3 2747.89 51.06677 621.7387 4419.686

P26S4 2537.23 51.63181 633.3571 4006.002

P26S5 2809.75 52.19957 625.9751 4488.597

P25S6 2319.25 45.42738 497.234 4664.303

P27S1 3868.2 40.94452 366.3554 10558.6

P27S2 3445.5 40.98932 366.8737 9391.516
P27S3 4115.78 42.20624 395.0152 10419.29

P27S4 3421.39128.67785 35.68632 95873.99
P27S5 3937.13 31.19649 104.2311 37773.07

P27S6 5171.89 30.90379 91.89656 56279.48

L

P28S1 5125.4 45.9854 509.1771 1006605

P28S2 Invalid Invalid Invalid Invalid

P2SS3 3476.01 46.20411 474.4932 7325.731

P28E4 3113.31 25.61036 -43.9306 -70868.8

P2_3S5 Invalid 30.03995 72.88265 nvalid

P28S6 3269.57 31.91459 119.7486 27303.63
t

P29S1 2574.2 40.65107341.1198 7546.323

P29S2 2603.07 41.36058 369.0903 7052.664

P29S3 2592.82 46.01955 488.5802 5306.846

P29S4 2538.42 26.51891 -20.3865 -124515

P29S5 3520.68 33.93774 174.5725 20167.44

P29S6 2895.83 i25.37669 -50.3906 -57467.6
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Table C-3: Critical strainenergyreleaserate (Giic) from equivalent area method using
compliance of unloading curve.

Specimen El C' a2(eff) a2'(eff) a- GII3 GII3'

# mmA2.N mm/N mm mm mm W/(w(a2-a J/rr_2

a2.<L a2.>L al -a2' W/(w(a2.'-a))

P30S4 1111221 0.00641 51.78611 33.43629 18.38371 1140.63 4551.546

P30S5 1145238 0.00492 45.11933 33.01756 18.79244 824.8229 2570.639

P30S6 1075719 0.00488 43.0314 32.91006 19.14994 909.0933 2549.225

P30S7 1075719 0.00501 44.22227 32.97008 18.83992 832.5669 2484.782

P30S8 1096743 0.0051 44.90519 33.00605 19.05395 885.3121 2731.503

P30S9 1055486 0.00548 45.88001 33.05939 20.66061 845.1304 2726.423

P30S10 1153082 0.00519 46.86188 33.11555 19.58445 771.8482 2596.282
0

P24S4 1129866 0,004 38.39516 32.70717 5.325115 1397.057 2866.669

P24S5 1122333 0.0065 52.45377 33.48508 23,03777 2360.609 9600.234

P24S6 1145238 0.00692 54.76127 33.66411:30.59365 6460.389 27876.73

P24S7 1169097 0.005 46.18536 33.07659;Invalid 814.1094 2661.562

P24S8 1114901 0.0064; 51.92214 33.44612 Invalid 3940.878 15787.65

P24S9 1133670 0.00767 57,34172 33.88431 Invalid . 5898.663 26913.39

0

P25S1 1153082 0.005 45.78648 33.05417 8.818681 7418.251 23832.7

P25S2 1149147 0.00518 46.70829 33.1066 7.835953 7137.315 23856.14

P25S3 1315234 0.00472 47.90985 33.17825 6.550246 6273.384 21995.22

P25S4 1295000 0.0043( 45.17943 33.02082 5.320514 6215.536 19425.59

P25S5 1379918 0.004 44.51671 32.98545 6.148229 6244.625 18910.01

P25S6 1457576 0.00445 49.15429 33.25653 Invalid 3487.431 12795.25
0

P26S1 1137500 0.0068 54.0857 33.60999 11.75907 2974.955 12628.59

P26S2 1133670 0.00667 53.45414 33.56068 18.96892 4258.937 17791.8
P26S3 1014157 0.00746 53.46899 33.56183 17.50494 4013.975116774.92

P26S4 1157045 0.0068 54.5599 33.64782 17.98399 3575.703 15355.39

P26S5 1111221 0.0066 52.6022 33.49611 18.70346 4417.171 18037.8

P25S6 1149147 0.00613 51.47538 33.41403 12.01335 3497.425 13829.11
0

P27S1 1325591 0.00567 53.2860:= 33.54777 7.396757 5544.022 23058.97

P27S2 1211151 0.00547 49.75195 33.29563 7.693685 5726.16 21442.85

P27S3 1336111 0.00553 52.8093 33.5116 8.694633 6088.465 25003.61

P27S4 1445064 0.00507 52.57332 33.49396 -4.81611 5226.855 21327.24

P27S5 1420675 0.00547 54.2153 33.62026 -2.42377 5468.355 23287.4

P27S6 1202500 0.00723 57.33796 33.88397 -2.98018 6752.097 30805.01

0

P28S1 1346800 0.0054 52.36772 33.47872 12.50668 7503.198 30441.28

P28S2 1177273 Invalid Invalid 31.47696 Invalid Invalid Invalid

P28S3 1185563 0.00587 51.13528 33.38999 12.81412 5810.147 22740.01

P28S4 1330830 0.00587 54.36134 33.6319 -8.02154 4424.861 18911.03

P28S5 1261049 Invalid Invalid 31.47696 Invalid Invalid Invalid

P28S6 1261049 0.006 53.4715 33.56202 -1.64744 4814.205 20120.49
G

P29S1 1261049 0.00537 50.369 33.33705 7.314018 4367.396 16688.86

P29S2 1100327 0.0056 47.69748 33.16531 8.195271 4861.61 16906.95

P29S.3 1211151 0.0056 50.41303 33.34005 12.6795 4298.086 16447.19

P29S4 1126087 0.0056 48.35621 33.20585 -6.68694 4618.946 16467.99

P29S5 1219928 0.00553 50.26238 33.32982 0.607921 5829.804 22.200.71

P29S6 1219928 0.0048 46.23551 33.07944 -7.70274 5837.067 19124.33

Av GII1 Stitch

Av GII2 Yam

Av GII3

670.724 UNSTITCI

672.7729

884.0744

886.7939 KEVLAR-

3416.134 2790,
3297.247 4xl/4"

1273.891 KEVI_AR-

9823.477 2790,
6657.822! 8xl/8"

537.3753 GLASS-

4400.615 1250,

3683.019 4xl/4"

531.6875 GLASS-

10123.14 1250

5600.354 8x1/8"

649.0901 GLASS-

8695.889 750

5498.572 4xl/4"

638.1222 GLASS-

6635.278 750

4968.818 8x1/8"
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Table C-4: A sample calculation for Gac with variation of crack length.

A C D E F _ G H I J K
17"l 752.64 2.979936 753.76 0.01296] 1236.873 0.003959 34.3865 7.520579 0.586889

178 754.88 2.992896 756 0.01728 1249.937 0.003965 34.43544 7.086505 0.648917

179 757.12 3.010176 757.12 0.01555; 1261.712 0.003976 34.53519 7.135444 0.654544

180 757.12; 3.025728 758.24 0.019008 1276.124 0.003996 34.71836 7.235186 0.69056."

181 759.36! 3.044736 759.36 0.01728 1289.246 0.00401 34.83544 7.418363 0.686476

182 759.36 3.062016 761.6 0.018144 1303.064i 0.004032 35.0348 7.535441 0.712627

183 763.84 3.08016 762.72 0,019008 1317.562i 0.004032 35.0357 7.734799 0.697765

184 761.6 3.099168 760.48; 0.014688 1328.732 0.004069 35.35351 7.7357 0.73416

185 759.36 3.113856 763.84 0.020736! 1344.571 0.0041011 35.61964 8.053507 0.770374

186 768.3; 3.134592 764.96 0.013824 1355.146 0.00408 35.44322; 8.319642 0.693621

187 761.6 3.148416 758.24 0.016416 1357.593 0.004134 35.89821 8.143222 0.791808

188 754.88 3.164832 757.12 0.013824 1378.06 0.004192 36.3775 8.598212 0.815925

189 759.36! 3.178656; 760.48 0.014688 1389.229 0.004186 36.32467 9.0775 0.767926

190 761.6 3.193344 759.36 0,015552 1401.039 0.004193 36.38109 9.024671 0.783673

191 757.12 3.208896 761.6 0.014688 1412.225 0.004238 36.74377 9.081089 0.8312_=

192 766.08 3.223564 764.96 0.015552 1424.122 0.004208 36.50147 9.443768 0.76649

193 763.84 3.239136 761.6 0.01728 1437.283 0.00424136.76199 9.201473 0.83167

194 759.36 3.256416 761.6 0.016416 1449.785 0.004288 37.13608 9.46199 0.862088

195 763.84 3.272832 766.08 0.016416 1462.361 0.004285 37.10768 9.83608 0.825461

The table shown above is a part of the spreadsheet used for calculations. The

column A is the serial number of data points, C and D are the load (Newton) and

Displacement (mm) respectively. These increments can be used to calculate (column E

and F) the area under the curve (i.e., work done = W) shown in column G. The column

H shows c0mpliance (8/P). The column I calculates the effective crack length using c'

= (2L3+3a'3)/(96EI). The column J is crack length (a'-%), and K is Gnc = (W-

0.5xPxS)/(wxcrack length) in KJ/m 2.

120



Table C-5: Details of the effect of contact roller pin friction.

Specimen Drop in

Label peak load
at time of

unloading

(newton)

P24S6' 95

P24S9 310
P25S2 40

P26S1 60

P26S2 110

P26S3 7O

P26S4 55

P27S1 115

P27S2 105

P27S3 105

P27S4 55
P27S5 45

P27S6 220

P28S1 85
P28S3 55

P29S6 165

Sixteen out of the total 43 stitched specimens that are listea above indicated

noticeable drop in peak load at the point of unloading cycle. The loads have been

calculated from the respective P-8 curves. The drop for all other specimens is considered

less than 30 newtons. An average of about 20% reduction in work done can be attributed

to friction in the nonlinear part of the loading regime.
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APPENDIX D
TEST DATA OF THIN PLAIN WEAVE LAMINATE SIF AND CAI TESTS

Table D-l: Testdataof plain weavelaminates

Specimen Stitch density

Specimen, Max. C-Scan C-Scan
Label Contact Area Area

Force (mm2)
Unstitchec(N)

(mm2)
Stitched

10 3000 0 0

11 3111.3

3558.4

4003.2

4448

12

13

174.2

163.9

231.6

438.114

114.2

109.6

109

116.1
15 4670.4 445.8 403.9

16 4981.8 629 445.8

Specimen

2800

45OO
55OO

Unstitched

2

3
4

6
7

Stitch

0

155.9

272.25
19.8

81.67

160.87

No data

4.95

8

4000

44OO

5100
5OOO

365O

density

Stitched

2 3500 9.9

3 48OO 237.6
4 6200 334.12

5 3200 2.47

6 5100 146.02

7 5500 188.1
8 5200 91.57

9 3650 22.27

= 5xl/4"

= 8xl/4'
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