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Abstract 
An analytical method called the selective averaging 
method (SAM) is proposed for prediction of the 
thermoelastic constants of textile composite materials. 
The unit cell of the composite is divided into slices 
(mesoscale), and the slices are subdivided into elements 
(microscale). The elastic constants of the homogenized 
medium are found by averaging the elastic constants of 
the elements selectively for both isostress and isostrain 
conditions. For thin textile composites where there are 
fewer unit cells in the thickness direction, SAM is used 
to compute directly the [A], [B] and [D] matrices of the 
composite plate. The results obtained by the SAM are 
compared with available finite-element-based micro- 
mechanical methods and analytical solutions. 0 1997 
Elsevier Science Limited 

Keywords: fiber composites, homogenization, micro- 
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1 INTRODUCTION 

The increasing demand for lightweight yet strong and 
stiff structures has led to the development of advanced 
fiber-reinforced composites. These materials are used 
not only in the aerospace industry but also in a variety 
of commercial applications in the automobile, marine 
and biomedical areas. Traditionally, fibrous compos- 
ites are manufactured by laminating several layers of 
unidirectional fiber tapes pre-impregnated with matrix 
material. The effective properties of the composite can 
be controlled by changing several parameters like the 
fiber orientation in a layer, stacking sequence, fiber 
and matrix material properties and fiber volume 
fraction. However, the manufacture of fibrous 
laminated composites from prepregs is labor intensive. 
Laminated composites also lack through-thickness 
reinforcement, and hence have poor interlaminar 
strength and fracture toughness. 

Recent developments in textile manufacturing 
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processes show some promise in overcoming the 
above limitations. Textile process such as weaving, 
braiding and knitting can turn large volumes of yarn 
into dry preforms at a faster rate, thus reducing costs 
and cycle times. The dry preforms are impregnated 
with an appropriate matrix material and cured in a 
mold by using processes such as resin-transfer molding 
(RTM). Two-dimensional woven and braided mats 
offer increased through-thickness properties as a 
consequence of yarn interlacing. The mats may be 
stitched with Kevlar or glass threads to provide 
additional reinforcement in the thickness direction.’ 
Three-dimensional woven and braided composites 
provide multidirectional reinforcement, thus directly 
enhancing the strength and stiffness in the thickness 
direction. Unlike laminated structures, three- 
dimensional composites do not possess weak planes of 
delamination, thus giving increased impact resistance 
and fracture toughness. Textile manufacturing proc- 
esses in conjunction with resin-transfer molding are 
also suitable for the production of intricate structural 
forms with reduced cycle times. This allows 
complex-shaped structures to be fabricated as integral 
units, thus eliminating the use of joints and fasteners. 

With the advancements in the aforementioned 
technologies there is a need to develop scientific 
methods of predicting the performance of the 
composites made by the above processes. There are 
numerous variables involved in textile processes 
besides the choice of the fiber and matrix materials. 
This, for example, includes (1) the number of 
filaments in the yarn specified by the yarn linear 
density and (2) the yarn architecture (description of 
the yarn geometry) determined by the type of weaving 
or braiding process. Thus, there is a need for 
analytical/numerical models to study the effect of 
these variables on the textile composite behavior. 
Ideally, a structural engineer would like to model 
textile composites as a homogeneous anisotropic 
material-preferably orthotropic-so that the structu- 
ral computations can be simplified, and also the 
existing computer codes can be used in the design. 
This would require the prediction of the effective 
(macroscopic) properties of the composites from the 
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constituent material (microscopic) characteristics such 
as yarn and matrix properties, yarn/matrix interface 
characteristics and the yarn architecture. This is 
possible if we assume that there is a representative 
volume element (RVE) or a unit cell that repeats 
itself throughout the volume of the composite, which 
is true in the case of textile composites. The unit cell 
can be considered as the smallest possible building 
block for the textile composite, such that the 
composite can be created by assembling the unit cell 
in all three dimensions (Fig. 1). The prediction of the 
effective macroscopic properties from the constituent 
material characteristics is one of the aspects of the 
science known as micromechanics. The effective 
properties include thermomechanical properties like 
stiffness, strength and coefficients of thermal expan- 
sion as well as thermal conductivities, electromagnetic 
and other transport properties. 

Numerical modeling of the unit cell is popular 
because of its ability to capture the effects of 
complicated yarn architectures. For instance, Yoshino 
and Ohtsuka* performed a two-dimensional finite- 
element analysis using plane strain elements to predict 
the stress distribution within a plain-weave fabric. 
Dasgupta et a1.3 used a homogenization scheme to 
predict the effective thermoelastic properties of 
woven-fabric composites. Whitcomb analyzed the 
unit cell of a plain-weave composite using three- 
dimensional finite elements to determine the effect of 
the yarn geometry and yarn volume fraction on the 
composite thermoelastic constants. Foye’ used in- 
homogeneous elements called replacement elements 
to model the unit cell. His model can be used to 
predict both composite stiffness and strength pro- 
perties. Cox et aZ.6 presented a three-dimensional 
finite-element model using two types of element. The 
yarns are modeled as two-node line elements and the 
rest of the medium as eight-node solid elements. The 
model was used to predict failure mechanisms in 
angle- and orthogonal-interlock woven composites. 
Sankar and Marrey7 and Marrey and Sankar’ studied 
the stress-gradient effects in thin textile composite 
plates and beams by performing a finite-element 
analysis of the uniti cell. They computed the flexural 
rigidity and coefficients of thermal expansion (CTEs), 
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Fig. 1. Unit cell for a textile composite. 

and showed that the beam/plate stiffness and thermal 
properties cannot be predicted from the equivalent 
thermoelastic constants of the material and beam/ 
plate thickness. 

However, the computational memory and run-time 
requirements for a detailed finite-element analysis are 
enormous. There are several parameters that can be 
changed to alter the effective composite properties. 
These parameters may be the fiber material in the 
yarn, fiber volume fraction in the yarn (also called 
yarn packing density), overall fiber volume fraction, 
preform architecture or the matrix material pro- 
perties. This emphasizes the need for simple analysis 
procedures to predict the trend in variation of 
composite properties when one of the parameters is 
changed. These procedures will be very useful in the 
preliminary selection of textile process and in 
generating performance maps of composites for 
various yarn architectures.” Ishikawa and Chou’@” 
developed the mosaic, fiber undulation and fiber 
bridging models to predict the thermomechanical 
behavior of woven composites. The basic principle in 
their model is to approximate the woven composite as 
a composite laminate and compute the properties by 
using lamination theory. Corrections are applied to 
account for the fiber continuity in the thickness 
direction and the fiber undulations that occur in the 
woven composite. These models were then extended 
by Yang et a1.13 in the fiber inclination model to 
predict the elastic properties of three-dimensional 
textile composites. The fiber inclination model was 
used to determine the elastic properties of, respec- 
tively, three-dimensional angle-interlock composites 
and braided composites by Whitney and Chou14 and 
Ma et al.‘” WhitneyI used a laminate analogy for 
predicting the elastic constants of unidirectional 
composites with elliptical fibers. 

Analytical methods are approximate because they 
assume certain forms for the state of stress and strain 
in the unit cell. Averaging the stiffness or compliance 
of the matrix and the inclusion has long been used to 
estimate the bounds of effective elastic properties of 
the composite. Essentially, the stiffness averaging 
assumes a state of uniform strain in the composite 
(isostrain), and compliance averaging assumes a state 
of uniform stress (isostress) in the matrix and 
inclusion. In fact, the rule-of-mixtures expressions for 
estimating the effective properties of a unidirectional 
composite is based on such averaging schemes. Naik17 
proposed an analytical method in which the yarns are 
discretized into segments. Knowing the direction of 
the yarn in each segment, the segment stiffness are 
computed by using appropriate transformations. Then, 
assuming a state of isostrain, the textile composite 
stiffness is obtained by volume averaging the 
yarn-segment stiffness and matrix stiffness in the unit 
cell. This method seems to work when there is 
multidirectional reinforcement in the composite. 
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However, the method fails for composites with 
preferential yarn reinforcement. In this paper a 
scheme called the selective averaging method (SAM) 
is proposed-in which both stiffness and compliance 
coefficients can be averaged selectively depending on 
a more realistic assumption of either isostress or 
isostrain. 

2 SELECTIVE AVERAGING METHOD (SAM) 
FOR 3D ELASTIC CONSTANTS 

In this section, we demonstrate a micromechanical 
model to predict the effective three-dimensional 
elastic constants and effective coefficients of thermal 
expansion (CTEs) for a textile composite. The 
macroscale properties of the composite are deter- 
mined at a scale much larger than the dimensions of 
the unit cell, but comparable to the dimensions of the 
structural component. The average stresses at a point 
at the structural scale will be called the macroscale 
stresses or macrostresses. The actual stresses at a 
point at the continuum level will be called the 
microscale stresses or microstresses. 

Consider a rectangular hexahedron as the unit cell 
of the three-dimensional textile composite (Fig. 1). 
The edges of the unit cell are assumed to be parallel 
to the coordinate axes x, y and z, with unit cells 
repeating in all three directions. On the macroscale 
the composite is assumed to be homogeneous and 
orthotropic and the composite behavior is charac- 
terized by the following constitutive relationship: 

(1) 

where {a”} and {e”} are the macrostresses and 
macrostrains,? respectively; {a?} and [CM] are the 
macroscale CTEs and orthotropic elasticity matrix to 
be determined; AT is a uniform temperature 
difference throughout the unit cell. The temperature 
difference AT is computed from a reference state at 
which no stresses exist. 

It is assumed that dimensions of the unit cell are a, 
b and c in the x, y and z directions respectively. The 
unit cell is discretized into slices on the mesoscale, and 
elements on the microscale as shown in Fig. 2. To 
distinguish between the macrolevel, mesolevel and 
microlevel properties, an over tilde is used to denote 

t In the pseudo vector representation of stresses and strains, 
u1 = a,, ,..., u6 = z,,, and l 1 = E,, ,..., l s = yXv. 
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Fig. 2. Hierarchy of discretization of a unit cell to determine 
first and fifth columns of the effective stiffness matrix: (a) 

unit cell; (b) slice; (c) element. 

the mesolevel properties, and a superscript M is used 
to denote the macrolevel properties. For example, 

[CM], [cl and [Cl re P resent the macrolevel, mesolevel 
and microlevel stiffnesses, respectively. 

The objective here is to determine the coefficients 
of the effective stiffness matrix [CM]. We will provide 
a detailed derivation for predicting the first column of 
the effective stiffness matrix. To find the first column 
of [CM], the unit cell is divided into slices (mesolevel) 
of thickness dx parallel to the yz plane (Fig. 2(a)). 
Each slice is further sub-divided into elements 
(microlevel) as shown in Fig. 2(b,c). The unit cell is 
subjected to a deformation such that all macrostrains 
except 6: are equal to zero and EE = 1. The uniform 
temperature difference AT is set to zero. It is assumed 
that the mesolevel and microlevel strains correspond- 
ing to the zero macrostrains are negligible. In other 
words, 

E~=~~=E~=O i#l (2) 

From eqn (2) and from the stress/strain relationships 
on the microlevel, mesolevel and macrolevel we can 
conclude that: 

of isostrain within the slice 
the average stiffness of a slice 

b 

G,(x,Y,z) dy dz (4) 

where C,,(x,y,z) is the element stiffness coefficient 
referred to the unit-cell coordinates. This is equivalent 
to performing stiffness averaging over the slice. Next, 
the stiffnesses of the slices are averaged on the 
macrolevel on the basis of the isostress assumption, 
i.e. g&x) = 0:. The average normal macrostrain in 
the x direction can be obtained as: 

1 u 
ME_ 

E.Lx I PAX dx 
a x=~ 

(5) 
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Substituting for cXX from eqn (3) into eqn (5) and 
from the above isostress assumption we obtain: 

(6) 

Comparing the second part of eqn (6) with the 
macroscale stress/strain relationship in eqn (3) we 
obtain: 

1 1 l-a 1 

(7) 

The macrostresses are found by volume averaging the 
corresponding microstress component over the unit 
cell. Then the macrostresses can be expressed as: 

Cirer dx dy dz i = 1,...,6 (8) 

Noting that e1 = c, (isostrain assumption within slice) 
and &r = gM1 (isostress assumption on the macroscale) 
and from eqn (3), the expressions for macrostresses in 
eqn (8) may be rewritten as follows: 

(9 
From eqn (9) it follows that the first column of the 
effective stiffness matrix can be expressed as: 

Cil(x,y,Z) h dy dz 

i = 2,...,6 (10) 

A similar procedure can be implemented to determine 
the second and third columns of the macroscale 
stiffness matrix, [CM]. It should be noted that the 
mesoscale slices will be parallel to different planes. 
For example, for finding the second column of [CM], 
the mesoscale slices will be normal to the y axis and 
for the third column normal to the z axis. 

A slightly different averaging scheme is used when 
the unit cell is subjected to shear strains on the 
macrolevel. Consider the case where the unit cell is 

subjected to unit yYz at the macroscale. The unit cell is 
again discretized into slices and elements as shown in 
Fig. 2. It is assumed that all the other components of 
strain at the macrolevel, mesolevel and microlevel are 
zero. This can be expressed as: 

E~=~~=E~=O i#4 (11) 

where l q = yyr. We also assume that the shear stress is 
constant in a slice such that r,,(x,y,z) = ;tyz(x). The 
shear compliance of a slice can then be obtained by 
averaging the shear compliances of all the elements in 
the slice as: 

dy dr 

The fourth column of the stiffness matrix, CE, is 
obtained under the assumption that all the slices are 
under a state of constant shear strain: 

i = 1,...,6 (13) 

A similar procedure is used to determine the fifth and 
sixth columns of [CM]. 

To determine the macroscale CTEs, a uniform 
temperature difference, AT, is applied throughout the 
unit cell. The unit cell is constrained from expanding 
such that all the strain components on the macrolevel 
are zero. A state of isostrain is assumed in the unit 
cell, implying that the mechanical strain components 
on the mesolevel and microlevel are also zero. This 
can be expressed as: 

eM=c_=~.=0 i=l I I I 1..., 6 (14) 

Then, the thermoelastic constitutive relationships on 
the macrolevel and microlevel will reduce to: 

{g”} = -[C”]{~X”}AT 

{a} = - [C]{a}AT 
(15) 

The macrostresses may be computed by volume 
averaging the corresponding microstress component as 
shown below: 

Then, from eqns (15) and (16), we can compute the 
macroscale CTEs as: 

{aI= & [c"l-'V~ (17) 

where {I} is given by the expression: 

{I} = I’ Ib r [C](a) dx dy dz 
0 0 0 

(18) 



Analytical method for micromechanics of textile composites 

3 SELECTIVE AVERAGING METHOD (SAM) 
FOR PLATE PROPERTIES 

The method explained in the previous section assumes 
that the unit cells exist in all three dimensions. This 
will be true in the case of thick textile composites. 
However, there are many applications in which thin 
composites are used. In fact, in order to take 
advantage of the properties of composites, the 
structures have to be made of thin plate-like members 
with stiffeners for load transfer. In such cases there 
will be fewer unit cells in the thickness direction. Thus 
free-surface effects will be predominant. There will be 
severe stress gradients through the thickness, and they 
will have an influence on the apparent stiffness and 
strength of the structure.‘,s 

The following simple example will illustrate the 
stress-gradient effects on the stiffness coefficients. 
Consider a layered medium consisting of alternating 
layers of materials of equal thickness with Young’s 
moduli El and E2 respectively (Fig. 3(a)). Any 
micromechanical model would predict that the 
medium can be considered as a homogeneous 
orthotropic material at the macroscale, and also that 
the effective Young’s modulus in the longitudinal 
direction is (E, + E,)/2, and there would not be any 
bending-stretching coupling in the principal material 
direction. However, if we consider a bimaterial beam 
consisting of the same two materials (Fig. 3(b)), we 
will find that there is a bending-stretching coupling, 
and also the flexural rigidity cannot be predicted from 
the Young’s modulus of the homogeneous orthotropic 
medium and the total beam thickness. The bimaterial 
beam has properties and behavior different from those 
of the corresponding infinite medium. This phenome- 
non is observed in the transverse shear behavior also.’ 
A similar behavior is also expected in thin textile 
composites where there are fewer unit cells in the 
thickness direction, and the unit cells are not 
subjected to a macroscopically homogeneous state of 
deformation as assumed in Section 2. One method of 
overcoming the above difficulties in thin textile 
composites is to model the composite as a plate, and 
compute the structural stiffness properties (e.g. [A], 
[B] and [D] of the plate) directly from the unit-cell 
analysis instead of from the continuum stiffness 
properties such as Young’s modulus, shear modulus, 
etc. 

(8 

Fig. 3. 

(b) 

Example to explain the stress-gradient effects. (a) 
Layered medium; (b) bimaterial beam. 

Composite plate 

.- b 
x 

Unit cell 

Fig. 4. Unit cell of a textile composite plate. 

The textile composite plate is assumed to be in the 
xy plane with unit cells repeating in the x and y 
directions (Fig. 4). The lengths of the unit cell in the x 
and y directions are assumed to be a and b, 
respectively, and the unit-cell thickness is h. On the 
macroscale the plate is assumed to be homogeneous 
and the plate behavior is characterized by the plate 
constitutive relationship: 

BM 

DM 

where &g, yz and KM are the midplane axial strain, 
shear strain and curvature; (YP and /?y are the plate 
thermal expansion and bending coefficients; Nj and Mi 
are the axial force and bending moment resultants, 
respectively, in the homogeneous plate. The plate 
stiffness matrix comprises the [AM], [B”] and [D”] 
sub-matrices, which are the plate extensional stiffness, 
coupling stiffness and bending stiffness matrices, 
respectively. The plate stiffness matrix can be 
expanded as: 

(20) 

The midplane strains and curvatures are related to the 
midplane displacements and rotations as: 

W KM=-! a* KM= ---J WX W 
X Kx”, =-+---li 

dx ’ y dy ’ dy ax 

(22) 
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In this section, the SAM procedure to compute the 
plate stiffness coefficients and plate thermal 
coefficients (for a thin textile composite) is described. 
To distinguish between the macrolevel, mesolevel and 
microlevel [A], [B] and [D] matrices, an over tilde is 
used to denote the mesolevel stiffness, and a 
superscript M is used to denote the macrolevel plate 
stiffness. The complete plate stiffness matrix on the 
macroscale, as defined by eqn (20) will be denoted by 
[CM] such that: 

[CM1 = [,“I ;:I (23) 

The procedure to find the plate stiffness and thermal 
coefficients is analogous to that used to find the 
continuum thermoelastic constants. To find the first 
column of the effective plate stiffness matrix, the unit 
cell is discretized into slices (mesolevel) and elements 
(microlevel) as shown in Fig. 2. The unit cell is subject 
to the deformation given by E% = 1. The following 
assumptions are made regarding the midplane strains 
and curvatures on the macrolevel, mesolevel and 
microlevel: 

eg = zio = $0 = 0, i =2,3 

#$I= K; = Ki = 0, i = 1,2,3 
(24) 

It is also assumed that the non-zero strain component, 
E X0, and the force resultant, N,, are uniform within the 
mesoscale and macroscale, respectively. These two 
assumptions can be expressed as the following 
equations: 

The mesolevel stiffness coefficient A,, can then be 

(25) 

obtained by averaging the corresponding element 
stiffness coefficients over the slice (consequence of the 
isostrain assumption) as: 

where Qll is the plane stress stiffness coefficient in the 
classical lamination theory,” which has been trans- 
formed to the xyz coordinates of the unit cell (for an 
isotropic material, Qii = E/(1 - u”)). The macroscale 
force and moment resultants can be expressed in 
terms of the microscale stresses by the following 
relationships: 

w=i[[[UidxdydZ i=1,2,3 

(27) 

z~i do dy dz i = 1,2,3 

The assumption of uniform force resultants on the 
macroscale and eqn (27) yield the following 

expressions for the first column of plate stiffness 
coefficients: 

1 1” 1 

A:: =I 
-CLX 

a 0 AU(~) 
(28) 

i = 1,2,3 (29) 

AM 

Z(X) Qil(X,Y,Z) h dY dz 
11 

i = 1,2,3, j =i +3 (30) 

A similar procedure is followed to compute the 
second column of the effective plate stiffness matrix. 

In the case of shear loading, y!J$ = 1, the unit cell is 
discretized into slices parallel to the xy plane. The 
assumptions of isostrain and uniform force resultants 
are reversed from the case of normal loading. The 
force resultant NXY is assumed to be uniform within a 
slice, such that 

kY = Nx, (31) 

It is also assumed that rXY is the only non-zero 
deformation component on the macrolevel, mesolevel 
and microlevel. Averaging the element compliance 
coefficients over the slice, we obtain: 

1 lb” 1 -=_ 
Q&J) ab II o o Q&Y>z) dx dy 

(32) 

The mesolevel stiffnesses are then averaged over the 
volume of the unit cell to yield the third column of the 
plate stiffness matrix, as follows: 

i = 1,2,3 (33) 

i = 1,2,3, j=i +3 (34) 

The expressions for the fourth, fifth and sixth columns 
of the plate stiffness matrix can be obtained in a 
similar fashion to that explained above, except that 
the one of the curvature components will be non-zero 
instead of a midplane strain component. For example, 
to determine the fourth column, K, will be the only 
non-zero deformation on the macroscale, mesoscale 
and microscale. Assuming that the curvature is 
uniform within a slice, we obtain K, = 17,. Then, by 
averaging the element stiffness coefficients over the 
slice, we obtain an expression analogous to eqn (26) 
as: 

D,,(x) = i [lb z2Q&,y,z) dy dz (35) 

The moment resultant M, is assumed to be uniform on 
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the mesoscale such that @=&lx. By averaging the 
slice compliance coefficients over the unit-cell volume, 
we get the following relationships for the fourth 
column of the plate stiffness matrix: 

Qi~(x,y,z) dx dy dz 

i = 1,2,3 (37) 

0:: 
z2 &(x) 

- Q~I(x,YJ> h 4 dz 

i = 1,2,3, j =i +3 (38) 

The fifth and sixth columns of the plate stiffness 
matrix can be found by using a similar procedure. 

To find the plate thermal coefficients, EiO and Ki are 
assumed as zero in the macrolevel, mesolevel and 
microlevel. The thermal stresses developed in the 
microscale due to a uniform temperature difference of 
AT = To are given by: 

The macroscale plate constitutive equation will reduce 
to 

By averaging the microscale stresses given by eqn (39) 
over the unit-cell volume (using eqn (27)), and 
equating to the macroscale force and moment 
resultants in eqn (40), we obtain the following 
relationships for the plate CTEs: 

(41) 

where Z, and Z, are integrals given by the expressions: 

1 i-c c-b 1-0 

Zl =; JJJ o o o [Qlb>hdy dz (42) 

z*=i z[Qlb> k dy dz (43) 

4 RESULTS AND DISCUSSION 

The SAM procedure was demonstrated for the 
following material systems. 

l Example 1: bimaterial medium-both materials 
are assumed to be isotropic; 

9 Example 2: unidirectional composite with 
identical Poisson’s ratios for fiber and matrix- 
fiber and matrix materials are isotropic; 

l Example 3: unidirectional composite with 
different Poisson’s ratios for fiber and matrix- 
fiber and matrix materials are isotropic; 

l Example 4: plain-weave textile composite (Fig. 
5(a))-yarn geometry and properties obtained 
from Dasgupta et a1.;3 

l Example 5: plain-weave textile composite-yarn 
geometry and properties obtained from Naik;17 

l Example 6: 5harness satin weave (Fig. 5(b))- 
yarn geometry and properties obtained from 
Naik.17 

For the textile composite examples (Examples 4-6), 
the yarn was assumed to be transversely isotropic and 
the matrix material as isotropic. The constituent 
material properties for the examples are listed in 
Table 1. 

Before we discuss the numerical results, some finer 
points of the numerical computations and limitations 
of the present method will be discussed. The 
expressions for the elastic constants given in eqns (lo), 

(13), (33), (34), (37) and (38) and other similar 
expressions are exact within the framework of 
assumptions made about the state of stress or strain at 
various levels. Thus the numerical method is only used 
to evaluate the integrals in the aforementioned 
expressions. For the purpose of numerical integration 
the unit cell is discretized into L x M x N hexahedral 

(a> 

(b> 

Fig. 5. Yam pattern in textile preforms (unit-cell boundary 
in dotted lines): (a) plain weave; (b) 5-harness satin weave. 
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Table 1. Properties of constituent materials for Examples l-6 

Example 1 

Example 2 

Example 3 

Example 4 

Examples 5, 6 

Layer 1 (E-glass): 
Layer 2 (epoxy): 
Unit-cell size: 

Fiber (E-glass): 
Matrix (epoxy): 
Unit-cell size: 

Fiber (E-glass): 
Matrix (epoxy): 
Unit-cell size: 

Yarn (glass/epoxy): 

Matrix (epoxy): 
Unit-cell size: 

Yarn (graphite/epoxy): 

Matrix (epoxy): 
Unit-cell size: 

E, = 70 GPa, y1 = 0.200, LYE = 5 X 1Om6 “Cl, VI = 0.5 
E, = 3.50 GPa, yZ = 0.350, (Ye = 60 X 10mh ‘C’, V, = 0.5 
0.500 mm X 0.500 X 0.256 mm 

E, = 100 GPa, Ye = 0.3, aI = 10 x 10mh ‘C-l, V’ = 0.6 
E, = 10 GPa, Y, = 0.3, (Y, = 100 x 10mh ‘C-’ 
10~mX10~mX10~m 

E, = 70 GPa, vf = 0.200, (Ye = 5 x 10mh ‘C’, V, = 0.6 
E, = 3.50 GPa, v, = 0.350, (Y, = 60 X 10eh “C’ 
10~mX10~mX10~m 

E, = 58.61 GPa, E, = 14.49 GPa, GLT = 5.38 GPa, 
Y LT = 0.250, vTT = 0.247, (Y,_ = 6.15 x 1O-6 ‘C-l, 
(Ye = 22.64 x 10mh ‘C-l, v, = 0.26 
E = 3.45 GPa, v = 0.37, (Y = 69 x 10mh ‘C-’ 
1.680 mm X 1.680 mm X 0.228 mm 

EL = 144.80 GPa, E, = 11.73 GPa, G, = 5.52 GPa, 
V ,_T = 0.23Ov, = 0.300, a,_ = -0.324 x lo-” VI, 
LYE = 14.00 x 10mh ‘C’, V, = 0.64 
E = 3.45 GPa, v = 0.35, (Y = 40 X 10eh ‘C’ 
2.822 mm X 2.822 mm X 0.2557 mm (Example 5); 
7.055 mm X 7.055 mm X 0.2557 mm (Example 6) 

y is the volume fraction of the constituent material. 

elements. The integrands, which are various material 
stiffness coefficients C,, are assumed to be uniform 
over each element. The coordinates of the center of 
the hexahedron decide whether an element is a matrix 
element or a yarn element. Thus the information on 
the yarn architecture is used only to determine the 
material at a given integration point, and also to 
transform the yarn properties to the xyz coordinate 
system. In the numerical examples presented below, 
L, M and N were selected such that each element is a 
cube and the minimum of L, M and N was equal to 
10. This number was arrived at after checking for 
convergence of results for a unidirectional fiber 
composite. 

From the integral expressions (e.g. eqn (lo)), it can 
be seen that [CM], the stiffness matrix of the 
homogenized composite, is obtained by computing the 
weighted sum of the microscale [C] where the weights 
are positive numbers. For example, in eqn (lo), CE 
and c,, are both positive. Hence the positive 
definiteness of [C] is preserved even at the 
macroscale. 

4.1 Results for continuum model 
A code called ~TEx-20 (pronounced as microtech) 
was written in FORTRAN 77 to implement SAM. 
The code was executed to estimate the thermoelastic 
constants for the six examples. Input to the code were 
the unit-cell dimensions, yarn geometry information, 
constituent material properties, and the number of 
divisions required to discretize the unit cell in the x, y 
and z directions. The user input to the code is 
presented in detail in ‘. The element stiffness matrix 
[C] was determined by computing the elasticity matrix 

for the material point at the geometric center of the 
element, and transforming it to the unit-cell 
coordinate system. The predicted macroscale stiffness 
matrix, [CM17 and consequently the macroscale 
compliance matrix, will not be symmetric owing to the 
approximate nature of the analysis. Therefore, the 
macroscale compliance matrix was made symmetric by 
averaging the off-diagonal compliance coefficients. 
The macroscale elastic constants were computed by 
comparing the symmetricized compliance coefficients 
with that of a homogeneous, orthotropic medium. The 
thermoelastic constants for the examples were also 
computed with a three-dimensional finite-element 
analysis code called PTEx-10. In the finite-element 
procedure,’ exact periodic displacement and traction 
boundary conditions were imposed between opposite 
surfaces of the unit cell. 

The results for a bimaterial medium (Example 1) 
are given in Table 2. The bimaterial medium is an 
infinite solid consisting of two different layers of equal 
thickness, stacked alternately in the z direction. The 
exact solution for the bimaterial medium was obtained 
by rule-of-mixtures type formulas, the details of which 
may be found in ‘. It can be observed that SAM 
marginally underpredicts the longitudinal and tran- 
sverse Young’s moduli, while the in-plane and 
transverse shear moduli are exact. Table 3 presents 
the SAM results for two cases of unidirectional 
composite (Examples 2 and 3). The fiber and matrix 
have identical Poisson’s ratio in Example 2, and 
different Poisson’s ratio in Example 3. The SAM 
results were compared with the finite-element results 
and with analytical solutions for unidirectional 
composite properties. The analytical expressions used 
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Table 2. Continuum properties for Example 1 

Example 1 SAM 36.02 8.72 2.48 15.23 0.599 0,183 3.88 52.20 
(bimaterial FEA 36.79 9-79 2.48 15.23 0.312 0.208 8.19 59.60 
medium) Exact 36.79 9.79 2.48 15.23 0.312 0.208 8.19 59.60 

solution 

Table 3. Continuum properties for Examples 2 and 3 

(&a) 

Example 2 SAM 64 
(unidirectional FEA 63.55 
composite) Rule of mixtures/ 64 

Halpin-Tsai 
equations 

Example 3 SAM 43.35 
(unidirectional FEA 43.12 
composite) Rule of mixtures/ 43.40 

Halpin-Tsai 
equations 

($a) 

50.24 0.45 8.36 0.341 0.300 12.41 21.51 
36.48 12.93 9.94 0.300 0.232 15.74 40.79 
34.55 11.26 13.29 0.300 0.300 15.63 55.11 

32.47 4.13 3.04 0.245 0.218 7.40 11.60 
18.15 5.59 3.92 0.242 0.222 7.40 25.44 
14.79 4.45 5.91 0.260 0.252 6.77 34.24 

were the rule of mixtures and Halpin-Tsai equations 
for elastic constants, and Schapery’s expressions for 
CTEs.” All of the unidirectional composite thermo- 
elastic constants but for the transverse modulus and 
transverse CTE (ET and czT) were found to match well 
with the compared data. Table 4 compares the SAM 
results for three textile composites (Examples 4, 5 and 
6) with available analytical and experimental results. 
In all three cases the thermoelastic constants obtained 
by implementing SAM were in good agreement with 
the available results. 

4.2 Results for plate model 
One of the objectives of this paper is to show that the 
plate stiffness properties of thin textile composites 
cannot be predicted from the continuum properties 
and plate thickness. This aspect was also highlighted 
by Marrey and Sankar,* where the authors performed 
a detailed finite-element analysis of the unit cell. The 
SAM procedure for the plate stiffness coefficients and 
plate CTEs was implemented in the code ~TEx-20. 
The computed plate thermoelastic coefficients for the 
examples are listed in Tables 5-7. The plate 

Table 4. Continuum properties for Examples 4, 5 and 6 

Gn G,, 
(Gpa) 

Example 4 SAM 12.46 6.62 1.64 1.67 0.399 0.162 29.10 68.48 
(plain weave) FEA 11.81 6.14 1.84 2.15 0.408 0.181 28.36 79.57 

Dasgupta et a1.3 14.38 6.25 1.94 3.94 0.463 0.167 22.50 86.00 

Example 5 SAM 63.41 11.13 3.79 4.24 0.402 0.027 1.36 21.53 
(plain weave) FEA 53.61 10.88 4.41 4.72 0.365 0.128 1.56 22.71 

Naik” 64.38 11.49 5.64 4.87 0.396 0.027 1.33 20.71 
Test (Ref. 19) 61.92 - - - - 0.110 - 

Example 6 SAM 69.30 11.62 4.06 4.73 0.355 0.031 1.21 20.25 
(5-harness FEA 64.51 11.33 4.45 4.85 0.329 0.047 1.55 22.03 
weave) Naik” 66.33 11.51 4.93 4.89 0.342 0.034 1.46 21.24 

Test (Ref. 19) 69.43 - - 5.24 - 0.060 - - 
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Table 5. Non-zero [A], [B] and [D] coefficients for bimaterial plate 

A,,,& A,, A66 B,,,&* B,, 46 D,,,&* 4, 46 opr, (Ypy 
(X106) (XIOh) (X106) (XIOS) 

P”,. P”, 
(~10~) (x10-') (xIo~') (~10~~) (~10~‘) (xlOP”C’) (‘C’m~~‘) 

SAM 

FEA 

Lamination theory 

for two plies 

Lamination theory 

using continuum 

elastic constants 

9.844 2.045 3.899 -0.565 -0.108 -0.228 53.721 11.163 21,282 17,828 0.170 
9.832 2.043 3.895 -0,563 - 0.108 -0.228 53.590 11.149 21,220 17.800 0.170 
9.832 2.043 3.895 -0,563 -0.108 -0.228 53.573 11.131 21,220 17,814 0.170 

9.844 2.048 3.899 OWMl 0~0000 0~0000 S3.762 11.183 21,293 8.190 0~0OOQ 

Note: [A], [B] and [D] coefficients in SI units. 

properties for the bimaterial case are presented in obtained with two-ply lamination theory. For the 
Table 5. In this case the bimaterial plate consisted unidirectional composite examples (Table 6), SAM 
only of two layers-one layer for each material. The was able to predict the [A] matrix coefficients (except 
bimaterial plate properties were also computed by for A& Dll, and the plate CTEs very well. However, 
using the lamination theory for two plies, from the SAM overpredicted D12 and OX2 and underpredicted 
continuum elastic constants presented in Table 2, and the coefficient DG6. For the textile composite examples 
a finite-element analysis.8 The SAM results for the (Table 7), SAM predicted all but Al2 and D12 with 
bimaterial plate were exact, i.e. identical to the results very good accuracy. It can be seen from Table 7 that 

Table 6. Non-zero [A], [B] and [D] coefficients for single-ply unidirectional composite (Examples 2 and 3) 

A,, 
(ok) 

42 46 4, DE D Doh a” x 
(X106) (X106) (X106) (xlo-6) (X10_“) (Xl?) (XP) (X10_ 

Q 
“C ‘) (xlo~+‘) 

Example 2 SAM 0.688 0.175 0.475 0.102 3.750 1,029 3.112 0,541 14.476 24.750 
(unidirectional FEA 0,690 0.149 0.496 0.177 3.589 0,596 1.980 0,947 15,489 26.184 
composite) Halpin-Tsai equations 0,673 0.109 0.363 0.113 5.606 0.908 3.026 0,939 15.625 55.112 

and lamination 

theory 

Example 3 SAM 0443 0.074 0.261 0,040 2.308 0446 1.799 0,195 6.628 13,076 
(unidirectional FEA 0.452 0,062 0.285 0,114 2.256 0.224 0.873 0.568 7,378 13,188 
composite) Halpin-Tsai equations 0.444 0,039 0,151 0.045 3.702 0.328 1.262 0,371 6.774 34,239 

and lamination 

theory 

Note: [A], [B] and [D] coefficients in SI units. 

Table 7. Non-zero [A], [B] and [D] coefficients for textile composite examples 

Am+ 42 46 B,, 2 2 PP 
(X10) (X106) (X106) 

(xlo3) Y;yo%; (x:2’) (x;;X) (x10~60.cy-L) (“C-l;-‘) 

2.667 0446 0.379 oaooo 6,017 1,590 1,360 27.505 omlo 

2.681 0.565 0.489 04000 5,687 1.518 1.577 21.465 oaKlo 

2.783 0.503 0.490 04000 12,054 2.177 2.124 28.363 omoo 

12.215 0.577 1.095 0~0000 44.782 2.133 4,398 1.994 04OiXl 

12.090 3.470 1.223 0~0000 41.695 0.373 5.879 1.480 04000 

13.938 1,787 1.208 oGiloo 75.942 9.734 6.582 1.556 omoo 

16.039 0.631 1.209 0+90” 81,164 3.307 5.868 2.422 

14.683 1.351 1.210 0.495” 90.072 1,123 6.149 2.910 

16.531 0.770 1.239 oG?ilo 87.283 4.195 6.753 1.550 

Example 4 

(plain weave) 

SAM 

FEA 

Lamination theory 

using continuum 

constants 

Example 5 

(plain weave) 

SAM 

FEA 

Lamination theory 

using continuum 

constants 

Example 6 SAM 

(S-harness weave) FEA 

Lamination theory 

using continuum 

constants 

Note: [A], [B] and [D] coefficients in SI units. 

“In Example 6, B,, = -B,,, and p”, = -P’,. 
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the plate stiffness coefficients and plate CTEs 

computed from the continuum elastic constants and 
CTEs are different from those computed using a direct 

micromechanical procedure. 
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