12 research outputs found
Enzootic Arbovirus Surveillance in Forest Habitat and Phylogenetic Characterization of Novel Isolates of Gamboa Virus in Panama
Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans.Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans
Forest disturbance and vector transmitted diseases in thelowland tropical rainforest of central Panama
objective To explore possible changes in the community attributes of haematophagous insects as afunction of forest disturbance. We compare the patterns of diversity and abundance, plus thebehavioural responses of three epidemiologically distinct vector assemblages across sites depictingvarious levels of forest cover.methods Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forestedhabitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey togather blood-seeking females.results We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites,confirming that disturbance has a negative impact on species richness. Species of Phlebotominae andCulicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tendto decrease in abundance along with rising levels of disturbance. In contrast, a significant portion ofmosquito species, including primary and secondary disease vectors, was classified as colonists (i.e.disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats.At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the verticalniche by being active at the forest canopy or in the understorey; yet this pattern was less clear indisturbed habitats. Most mosquito species were not vertically stratified in their habitat preference.conclusion We posit that entomological risk and related pathogen exposure to humans is higher inpristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forestdisturbance poses a higher entomological risk for mosquito-borne infections. This suggests that theDilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yetunrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community levelentomological surveillance is, therefore, the key for predicting potential disease spill over in scenariosof pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest qualityshould also be considered when assessing arthropod-borne disease transmission risk.objective To explore possible changes in the community attributes of haematophagous insects as afunction of forest disturbance. We compare the patterns of diversity and abundance, plus thebehavioural responses of three epidemiologically distinct vector assemblages across sites depictingvarious levels of forest cover.methods Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forestedhabitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey togather blood-seeking females.results We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites,confirming that disturbance has a negative impact on species richness. Species of Phlebotominae andCulicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tendto decrease in abundance along with rising levels of disturbance. In contrast, a significant portion ofmosquito species, including primary and secondary disease vectors, was classified as colonists (i.e.disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats.At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the verticalniche by being active at the forest canopy or in the understorey; yet this pattern was less clear indisturbed habitats. Most mosquito species were not vertically stratified in their habitat preference.conclusion We posit that entomological risk and related pathogen exposure to humans is higher inpristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forestdisturbance poses a higher entomological risk for mosquito-borne infections. This suggests that theDilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yetunrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community levelentomological surveillance is, therefore, the key for predicting potential disease spill over in scenariosof pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest qualityshould also be considered when assessing arthropod-borne disease transmission risk
Disturbance and mosquito diversity in the lowland tropical rainforest of central Panama
The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments.The Intermediate Disturbance Hypothesis (IDH) is well-known in ecology providing an explanation for the role of disturbance in the coexistence of climax and colonist species. Here, we used the IDH as a framework to describe the role of forest disturbance in shaping the mosquito community structure, and to identify the ecological processes that increase the emergence of vector-borne disease. Mosquitoes were collected in central Panama at immature stages along linear transects in colonising, mixed and climax forest habitats, representing diferent levels of disturbance. Species were identifed taxonomically and classifed into functional categories (i.e., colonist, climax, disturbance-generalist, and rare). Using the Huisman-Olf-Fresco multi-model selection approach, IDH testing was done. We did not detect a unimodal relationship between species diversity and forest disturbance expected under the IDH; instead diversity peaked in old-growth forests. Habitat complexity and constraints are two mechanisms proposed to explain this alternative postulate. Moreover, colonist mosquito species were more likely to be involved in or capable of pathogen transmission than climax species. Vector species occurrence decreased notably in undisturbed forest settings. Old-growth forest conservation in tropical rainforests is therefore a highly-recommended solution for preventing new outbreaks of arboviral and parasitic diseases in anthropic environments
Forest disturbance and vector transmitted diseases in the lowland tropical rainforest of central Panama
objective To explore possible changes in the community attributes of haematophagous insects as afunction of forest disturbance. We compare the patterns of diversity and abundance, plus thebehavioural responses of three epidemiologically distinct vector assemblages across sites depictingvarious levels of forest cover.methods Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forestedhabitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey togather blood-seeking females.results We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites,confirming that disturbance has a negative impact on species richness. Species of Phlebotominae andCulicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tendto decrease in abundance along with rising levels of disturbance. In contrast, a significant portion ofmosquito species, including primary and secondary disease vectors, was classified as colonists (i.e.disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats.At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the verticalniche by being active at the forest canopy or in the understorey; yet this pattern was less clear indisturbed habitats. Most mosquito species were not vertically stratified in their habitat preference.conclusion We posit that entomological risk and related pathogen exposure to humans is higher inpristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forestdisturbance poses a higher entomological risk for mosquito-borne infections. This suggests that theDilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yetunrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community levelentomological surveillance is, therefore, the key for predicting potential disease spill over in scenariosof pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest qualityshould also be considered when assessing arthropod-borne disease transmission risk.objective To explore possible changes in the community attributes of haematophagous insects as afunction of forest disturbance. We compare the patterns of diversity and abundance, plus thebehavioural responses of three epidemiologically distinct vector assemblages across sites depictingvarious levels of forest cover.methods Over a 3-year period, we sampled mosquitoes, sandflies and biting-midges in forestedhabitats of central Panama. We placed CDC light traps in the forest canopy and in the understorey togather blood-seeking females.results We collected 168 405 adult haematophagous dipterans in total, including 26 genera and 86species. Pristine forest settings were always more taxonomically diverse than the disturbed forest sites,confirming that disturbance has a negative impact on species richness. Species of Phlebotominae andCulicoides were mainly classified as climax (i.e. forest specialist) or disturbance-generalist, which tendto decrease in abundance along with rising levels of disturbance. In contrast, a significant portion ofmosquito species, including primary and secondary disease vectors, was classified as colonists (i.e.disturbed-areas specialists), which tend to increase in numbers towards more disturbed forest habitats.At pristine forest, the most prevalent species of Phlebotominae and Culicoides partitioned the verticalniche by being active at the forest canopy or in the understorey; yet this pattern was less clear indisturbed habitats. Most mosquito species were not vertically stratified in their habitat preference.conclusion We posit that entomological risk and related pathogen exposure to humans is higher inpristine forest scenarios for Culicoides and Phlebotominae transmitted diseases, whereas forestdisturbance poses a higher entomological risk for mosquito-borne infections. This suggests that theDilution Effect Hypothesis (DEH) does not apply in tropical rainforests where highly abundant, yetunrecognised insect vectors and neglected zoonotic diseases occur. Comprehensive, community levelentomological surveillance is, therefore, the key for predicting potential disease spill over in scenariosof pristine forest intermixed with anthropogenic habitats. We suggest that changes in forest qualityshould also be considered when assessing arthropod-borne disease transmission risk
Recommended from our members
Current perspectives and the future of domestication studies.
It is difficult to overstate the cultural and biological impacts that the domestication of plants and animals has had on our species. Fundamental questions regarding where, when, and how many times domestication took place have been of primary interest within a wide range of academic disciplines. Within the last two decades, the advent of new archaeological and genetic techniques has revolutionized our understanding of the pattern and process of domestication and agricultural origins that led to our modern way of life. In the spring of 2011, 25 scholars with a central interest in domestication representing the fields of genetics, archaeobotany, zooarchaeology, geoarchaeology, and archaeology met at the National Evolutionary Synthesis Center to discuss recent domestication research progress and identify challenges for the future. In this introduction to the resulting Special Feature, we present the state of the art in the field by discussing what is known about the spatial and temporal patterns of domestication, and controversies surrounding the speed, intentionality, and evolutionary aspects of the domestication process. We then highlight three key challenges for future research. We conclude by arguing that although recent progress has been impressive, the next decade will yield even more substantial insights not only into how domestication took place, but also when and where it did, and where and why it did not
Enzootic Arbovirus Surveillance in Forest Habitat and Phylogenetic Characterization of Novel Isolates of Gamboa Virus in Panama
Landscape changes occurring in Panama, a country whose geographic location and climate have historically supported arbovirus transmission, prompted the hypothesis that arbovirus prevalence increases with degradation of tropical forest habitats. Investigations at four variably degraded sites revealed a diverse array of potential mosquito vectors, several of which are known vectors of arbovirus pathogens. Overall, 675 pools consisting of 25,787 mosquitoes and representing 29 species from nine genera (collected at ground and canopy height across all habitats) were screened for cytopathic viruses on Vero cells. We detected four isolates of Gamboa virus (family: Bunyaviridae; genus: Orthobunyavirus) from pools of Aedeomyia squamipennis captured at canopy level in November 2012. Phylogenetic characterization of complete genome sequences shows the new isolates to be closely related to each other with strong evidence of reassortment among the M segment of Panamanian Gamboa isolates and several other viruses of this group. At the site yielding viruses, Soberanía National Park in central Panama, 18 mosquito species were identified, and the predominant taxa included A. squamipennis, Coquillettidia nigricans, and Mansonia titillans