13 research outputs found

    Respiratory Physiology on a Chip

    Get PDF
    Our current understanding of respiratory physiology and pathophysiological mechanisms of lung diseases is often limited by challenges in developing in vitro models faithful to the respiratory environment, both in cellular structure and physiological function. The recent establishment and adaptation of microfluidic-based in vitro devices (μFIVDs) of lung airways have enabled a wide range of developments in modern respiratory physiology. In this paper, we address recent efforts over the past decade aimed at advancing in vitro models of lung structure and airways using microfluidic technology and discuss their applications. We specifically focus on μFIVDs covering four major areas of respiratory physiology, namely, artificial lungs (AL), the air-liquid interface (ALI), liquid plugs and cellular injury, and the alveolar-capillary barrier (ACB)

    A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology

    No full text
    In this study, we demonstrate a new perspective on in vitro assessment method for evaluating quantum dot (QD) toxicity by using microfluidics technology. A new biomimetic approach, based on the flow exposure condition, was applied in order to characterize the cytotoxic potential of QD. In addition, the outcomes obtained from the flow exposure condition were compared to those of the static exposure condition. An in vitro cell array system was established that used an integrated multicompartmented microfluidic device to develop a sensitive flow exposure condition. QDs modified with cetyltrimethyl ammonium bromide∕trioctylphosphine oxide were used for the cytotoxicity assessment. The results suggested noticeable differences in the number of detached and deformed cells and the viability percentages between two different exposure conditions. The intracellular production of reactive oxygen species and release of cadmium were found to be the possible causes of QD-induced cytotoxicity, irrespective of the types of exposure condition. In contrast to the static exposure, the flow exposure apparently avoided the gravitational settling of particles and probably assisted in the homogeneous distribution of nanoparticles in the culture medium during exposure time. Moreover, the flow exposure condition resembled in vivo physiological conditions very closely, and thus, the flow exposure condition can offer potential advantages for nanotoxicity research

    GPIIb/IIIa Receptor Targeted Rutin Loaded Liposomes for Site-Specific Antithrombotic Effect

    No full text
    Rutin (RUT) is a flavonoid obtained from a natural source and is reported for antithrombotic potential, but its delivery remains challenging because of its poor solubility and bioavailability. In this research, we have fabricated novel rutin loaded liposomes (RUT-LIPO, nontargeted), liposomes conjugated with RGD peptide (RGD-RUT-LIPO, targeted), and abciximab (ABX-RUT-LIPO, targeted) by ethanol injection method. The particle size, ζ potential, and morphology of prepared liposomes were analyzed by using DLS, SEM, and TEM techniques. The conjugation of targeting moiety on the surface of targeted liposomes was confirmed by XPS analysis and Bradford assay. In vitro assessment such as blood clot assay, aPTT assay, PT assay, and platelet aggregation analysis was performed using human blood which showed the superior antithrombotic potential of ABX-RUT-LIPO and RGD-RUT-LIPO liposomes. The clot targeting efficiency was evaluated by in vitro imaging and confocal laser scanning microscopy. A significant (P < 0.05) rise in the affinity of targeted liposomes toward activated platelets was demonstrated that revealed their remarkable potential in inhibiting thrombus formation. Furthermore, an in vivo study executed on Sprague Dawley rats (FeCl3 model) demonstrated improved antithrombotic activity of RGD-RUT-LIPO and ABX-RUT-LIPO compared with pure drug. The pharmacokinetic study performed on rats demonstrates the increase in bioavailability when administered as liposomal formulation as compared to RUT. Moreover, the tail bleeding assay and clotting time study (Swiss Albino mice) indicated a better antithrombotic efficacy of targeted liposomes than control preparations. Additionally, biocompatibility of liposomal formulations was determined by an in vitro hemolysis study and cytotoxicity assay, which showed that they were hemocompatible and safe for human use. A histopathology study on rats suggested no severe toxicity of prepared liposomal formulations. Thus, RUT encapsulated nontargeted and targeted liposomes exhibited superior antithrombotic potential over RUT and could be used as a promising carrier for future use

    Tailored Chemical Properties of 4‑Arm Star Shaped Poly(d,l‑lactide) as Cell Adhesive Three-Dimensional Scaffolds

    No full text
    Biodegradable poly­(lactic acid) (PLA) is widely used to fabricate 3D scaffolds for tissue regeneration. However, PLA lacks cell adhering functional moieties, which limit its successful application in tissue engineering. Herein, we have tailored the cell adhesive properties of star shaped poly­(d,l-lactide) (ss-PDLLA) by grafting gelatin to their 4 arms. Grafting of gelatin on PDLLA backbone was confirmed by <sup>1</sup>H NMR and FTIR. The synthesized star shaped poly­(d,l-lactide)-<i>b</i>-gelatin (ss-pLG) exhibited enhanced wettability and protein adsorption. The modification also facilitated better cell adhesion and proliferation on their respective polymer coated 2D substrates, compared to their respective unmodified ss-PDLLA. Further, 3D scaffolds were fabricated from gelatin grafted and unmodified polymers. The fabricated scaffolds were shown to be cytocompatible to 3T3-L1 cells and hemocompatible to red blood cells (RBCs). Cell proliferation was increased up to 2.5-fold in ss-pLG scaffolds compared to ss-PDLLA scaffolds. Furthermore, a significant increase in cell number reveals a high degree of infiltration of cells into the scaffolds, forming a viable and healthy 3D interconnected cell community. In addition to that, burst release of docetaxal (DTX) was observed from ss-pLG scaffolds. Hence, this new system of grafting polymers followed by fabricating 3D scaffolds could be utilized as a successful approach in a variety of applications where cell-containing depots are used
    corecore